4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Single-cell RNA sequencing reveals intratumoral heterogeneity in primary uveal melanomas and identifies HES6 as a driver of the metastatic disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          SCENIC: Single-cell regulatory network inference and clustering

          Although single-cell RNA-seq is revolutionizing biology, data interpretation remains a challenge. We present SCENIC for the simultaneous reconstruction of gene regulatory networks and identification of cell states. We apply SCENIC to a compendium of single-cell data from tumors and brain, and demonstrate that the genomic regulatory code can be exploited to guide the identification of transcription factors and cell states. SCENIC provides critical biological insights into the mechanisms driving cellular heterogeneity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.

            To explore the distinct genotypic and phenotypic states of melanoma tumors, we applied single-cell RNA sequencing (RNA-seq) to 4645 single cells isolated from 19 patients, profiling malignant, immune, stromal, and endothelial cells. Malignant cells within the same tumor displayed transcriptional heterogeneity associated with the cell cycle, spatial context, and a drug-resistance program. In particular, all tumors harbored malignant cells from two distinct transcriptional cell states, such that tumors characterized by high levels of the MITF transcription factor also contained cells with low MITF and elevated levels of the AXL kinase. Single-cell analyses suggested distinct tumor microenvironmental patterns, including cell-to-cell interactions. Analysis of tumor-infiltrating T cells revealed exhaustion programs, their connection to T cell activation and clonal expansion, and their variability across patients. Overall, we begin to unravel the cellular ecosystem of tumors and how single-cell genomics offers insights with implications for both targeted and immune therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma.

              Human cancers are complex ecosystems composed of cells with distinct phenotypes, genotypes, and epigenetic states, but current models do not adequately reflect tumor composition in patients. We used single-cell RNA sequencing (RNA-seq) to profile 430 cells from five primary glioblastomas, which we found to be inherently variable in their expression of diverse transcriptional programs related to oncogenic signaling, proliferation, complement/immune response, and hypoxia. We also observed a continuum of stemness-related expression states that enabled us to identify putative regulators of stemness in vivo. Finally, we show that established glioblastoma subtype classifiers are variably expressed across individual cells within a tumor and demonstrate the potential prognostic implications of such intratumoral heterogeneity. Thus, we reveal previously unappreciated heterogeneity in diverse regulatory programs central to glioblastoma biology, prognosis, and therapy. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Cell Death & Differentiation
                Cell Death Differ
                Springer Science and Business Media LLC
                1350-9047
                1476-5403
                January 18 2021
                Article
                10.1038/s41418-020-00730-7
                33462406
                616f585f-f74e-4e89-a822-c9dd718d1e6a
                © 2021

                http://www.springer.com/tdm

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article