4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using quantum devices supported by classical computational resources is a promising approach to quantum-enabled computation. One example of such a hybrid quantum-classical approach is the variational quantum eigensolver (VQE) built to utilize quantum resources for the solution of eigenvalue problems and optimizations with minimal coherence time requirements by leveraging classical computational resources. These algorithms have been placed among the candidates for first to achieve supremacy over classical computation. Here, we provide evidence for the conjecture that variational approaches can automatically suppress even non-systematic decoherence errors by introducing an exactly solvable channel model of variational state preparation. Moreover, we show how variational quantum-classical approaches fit in a more general hierarchy of measurement and classical computation that allows one to obtain increasingly accurate solutions with additional classical resources. We demonstrate numerically on a sample electronic system that this method both allows for the accurate determination of excited electronic states as well as reduces the impact of decoherence, without using any additional quantum coherence time or formal error correction codes.

          Related collections

          Author and article information

          Journal
          2016-03-17
          Article
          1603.05681
          6180f904-a437-40fe-91b3-05d6df699519

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          quant-ph physics.chem-ph

          Quantum physics & Field theory,Physical chemistry
          Quantum physics & Field theory, Physical chemistry

          Comments

          Comment on this article