+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Red blood cells (RBCs) generate microvesicles to remove damaged cell constituents such as oxidized hemoglobin and damaged membrane constituents, and thereby prolong their lifespan. Damage to hemoglobin, in combination with altered phosphorylation of membrane proteins such as band 3, lead to a weakening of the binding between the lipid bilayer and the cytoskeleton, and thereby to membrane budding and microparticle shedding. Microvesicle generation is disturbed in patients with RBC-centered diseases, such as sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, spherocytosis or malaria. A disturbance of the membrane-cytoskeleton interaction is likely to be the main underlying mechanism, as is supported by data obtained from RBCs stored in blood bank conditions. A detailed proteomic, lipidomic and immunogenic comparison of microvesicles derived from different sources is essential in the identification of the processes that trigger vesicle generation. The contribution of RBC-derived microvesicles to inflammation, thrombosis and autoimmune reactions emphasizes the need for a better understanding of the mechanisms and consequences of microvesicle generation.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system.

          Humans and mice infected with different Plasmodium strains are known to produce microvesicles derived from the infected red blood cells (RBCs), denoted RMVs. Studies in mice have shown that RMVs are elevated during infection and have proinflammatory activity. Here we present a detailed characterization of RMV composition and function in the human malaria parasite Plasmodium falciparum. Proteomics profiling revealed the enrichment of multiple host and parasite proteins, in particular of parasite antigens associated with host cell membranes and proteins involved in parasite invasion into RBCs. RMVs are quantitatively released during the asexual parasite cycle prior to parasite egress. RMVs demonstrate potent immunomodulatory properties on human primary macrophages and neutrophils. Additionally, RMVs are internalized by infected red blood cells and stimulate production of transmission stage parasites in a dose-dependent manner. Thus, RMVs mediate cellular communication within the parasite population and with the host innate immune system. Copyright © 2013 Elsevier Inc. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.

            We determined the numbers, cellular origin and thrombin-generating properties of microparticles in healthy individuals (n = 15). Microparticles, isolated from fresh blood samples and identified by flow cytometry, originated from platelets [237 x 10(6)/L (median; range 116-565)], erythrocytes (28 x 10(6)/L; 13-46), granulocytes (46 x 10(6)/L; 16-94) and endothelial cells (64 x 10(6)/L; 16-136). They bound annexin V, indicating surface exposure of phosphatidylserine, and supported coagulation in vitro. Interestingly, coagulation occurred via tissue factor (TF)-independent pathways, because antibodies against TF or factor (F)VII were ineffective. In contrast, in our in vitro experiments coagulation was partially inhibited by antibodies against FXII (12%, p = 0.006), FXI (36%, p <0.001), FIX (28%, p <0.001) or FVIII (32%, p <0.001). Both the number of annexin V-positive microparticles present in plasma and the thrombin-generating capacity inversely correlated to the plasma concentrations of thrombin-antithrombin complex (r = -0.49, p = 0.072 and r = -0.77, p = 0.001, respectively), but did not correlate to prothrombin fragment F1+2 (r = -0.002, p = 0.99). The inverse correlations between the number of microparticles and their thrombin-forming capacity and the levels of thrombin-antithrombin complex in plasma may indicate that microparticles present in the circulation of healthy individuals have an anticoagulant function by promoting the generation of low amounts of thrombin that activate protein C. We conclude that microparticles in blood from healthy individuals support thrombin generation via TF- and FVII-independent pathways, and which may have an anticoagulant function.
              • Record: found
              • Abstract: found
              • Article: not found

              Erythrocyte vesiculation: a self-protective mechanism?

              Previous studies demonstrated that 20% of haemoglobin is lost from circulating erythrocytes during their total lifespan by vesiculation. To study whether removal molecules other than membrane-bound haemoglobin were present in erythrocyte-derived vesicles, flow cytometry and immunoblot analysis were employed to examine the presence of phosphatidylserine (PS) and IgG, and senescent cell antigens respectively. It was demonstrated that 67% of glycophorin A-positive vesicles exposed PS, and that half of these vesicles also contained IgG. Immunoblot analysis revealed the presence of a breakdown product of band 3 that reacted with antibodies directed against senescent erythrocyte antigen-associated band 3 sequences. In contrast, only the oldest erythrocytes contained senescent cell antigens and IgG, and only 0.1% of erythrocytes, of all ages, exposed PS. It was concluded that vesiculation constitutes a mechanism for the removal of erythrocyte membrane patches containing removal molecules, thereby postponing the untimely elimination of otherwise healthy erythrocytes. Consequently, these same removal molecules mediate the rapid removal of erythrocyte-derived vesicles from the circulation.

                Author and article information

                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                08 June 2018
                : 9
                Department of Biochemistry, Radboud University Medical Center , Nijmegen, Netherlands
                Author notes

                Edited by: Lars Kaestner, Saarland University, Germany

                Reviewed by: Richard Van Wijk, Utrecht University, Netherlands; Michel Prudent, Transfusion Interrégionale CRS SA, Switzerland; Pablo Martín-Vasallo, Universidad de La Laguna, Spain

                *Correspondence: Giel J. C. G. M. Bosman, Giel.Bosman@ 123456radboudumc.nl

                This article was submitted to Membrane Physiology and Membrane Biophysics, a section of the journal Frontiers in Physiology

                Copyright © 2018 Leal, Adjobo-Hermans and Bosman.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 66, Pages: 7, Words: 0


                Comment on this article