Blog
About

3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A High-precision Motion Compensation Method for SAR Based on Image Intensity Optimization

      Read this article at

      ScienceOpenPublisherDOAJ
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Owing to the platform instability and precision limitations of motion sensors, motion errors negatively affect the quality of synthetic aperture radar (SAR) images. The autofocus Back Projection (BP) algorithm based on the optimization of image sharpness compensates for motion errors through phase error estimation. This method can attain relatively good performance, while assuming the same phase error for all pixels, i.e., it ignores the spatial variance of motion errors. To overcome this drawback, a high-precision motion error compensation method is presented in this study. In the proposed method, the Antenna Phase Centers (APC) are estimated via optimization using the criterion of maximum image intensity. Then, the estimated APCs are applied for BP imaging. Because the APC estimation equals the range history estimation for each pixel, high-precision phase compensation for every pixel can be achieved. Point-target simulations and processing of experimental data validate the effectiveness of the proposed method.

          Related collections

          Author and article information

          Journal
          Journal of Radars
          Chinese Academy of Sciences
          01 February 2015
          : 4
          : 1
          : 60-69
          Affiliations
          [1 ] School of Electronic Engineering, University of Electronic Science and Technology of China
          Article
          0398865471bd40f19e93be7a656c1c5f
          10.12000/JR15007

          This work is licensed under a Creative Commons Attribution 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

          Categories
          Technology (General)
          T1-995

          Comments

          Comment on this article