9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Evolution of Gene Expression Underlying Vision Loss in Cave Animals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dissecting the evolutionary genetic processes underlying eye reduction and vision loss in obligate cave-dwelling organisms has been a long-standing challenge in evolutionary biology. Independent vision loss events in related subterranean organisms can provide critical insight into these processes as well as into the nature of convergent loss of complex traits. Advances in evolutionary developmental biology have illuminated the significant role of heritable gene expression variation in the evolution of new forms. Here, we analyze gene expression variation in adult eye tissue across the freshwater crayfish, representing four independent vision-loss events in caves. Species and individual expression patterns cluster by eye function rather than phylogeny, suggesting convergence in transcriptome evolution in independently blind animals. However, this clustering is not greater than what is observed in surface species with conserved eye function after accounting for phylogenetic expectations. Modeling expression evolution suggests that there is a common increase in evolutionary rates in the blind lineages, consistent with a relaxation of selective constraint maintaining optimal expression levels. This is evidence for a repeated loss of expression constraint in the transcriptomes of blind animals and that convergence occurs via a similar trajectory through genetic drift.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The evolution of gene expression levels in mammalian organs.

            Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Convergence, adaptation, and constraint.

              Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Mol Biol Evol
                Mol. Biol. Evol
                molbev
                Molecular Biology and Evolution
                Oxford University Press
                0737-4038
                1537-1719
                August 2018
                21 May 2018
                21 May 2018
                : 35
                : 8
                : 2005-2014
                Affiliations
                Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, Computational Biology Institute, The George Washington University, Washington, DC
                Author notes
                Corresponding author: E-mail: kcrandall@ 123456gwu.edu .
                Author information
                http://orcid.org/0000-0002-0836-3389
                Article
                msy106
                10.1093/molbev/msy106
                6063295
                29788330
                61a4fe31-3e0d-4d97-9c6b-9c2528d348ec
                © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                Page count
                Pages: 10
                Funding
                Funded by: George Washington University 10.13039/100007108
                Funded by: Cosmos Club Foundation 10.13039/100008544
                Funded by: National Science Foundation 10.13039/100000001
                Award ID: DEB-1601631
                Categories
                Discoveries

                Molecular biology
                transcriptome,gene expression,cave organism,crayfish,vision
                Molecular biology
                transcriptome, gene expression, cave organism, crayfish, vision

                Comments

                Comment on this article