Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Influence of Anatomical Detail and Tissue Conductivity Variations in Simulations of Multi-Contact Nerve Cuff Recordings

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Functional electrical stimulation for neuromuscular applications.

          Paralyzed or paretic muscles can be made to contract by applying electrical currents to the intact peripheral motor nerves innervating them. When electrically elicited muscle contractions are coordinated in a manner that provides function, the technique is termed functional electrical stimulation (FES). In more than 40 years of FES research, principles for safe stimulation of neuromuscular tissue have been established, and methods for modulating the strength of electrically induced muscle contractions have been discovered. FES systems have been developed for restoring function in the upper extremity, lower extremity, bladder and bowel, and respiratory system. Some of these neuroprostheses have become commercialized products, and others are available in clinical research settings. Technological developments are expected to produce new systems that have no external components, are expandable to multiple applications, are upgradable to new advances, and are controlled by a combination of signals, including biopotential signals from nerve, muscle, and the brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polyimide cuff electrodes for peripheral nerve stimulation.

            This paper describes a new tripolar spiral cuff electrode, composed of a thin (10 microm) and flexible polyimide insulating carrier and three circumneural platinum electrodes, suitable for stimulation of peripheral nerves. The cuffs were implanted around the sciatic nerve of two groups of ten rats each, one in which the polyimide ribbon was attached to a plastic connector to characterize the in vivo stimulating properties of the electrode, and one without a connector for testing possible mechanical nerve damage by means of functional and histological methods. The polyimide cuff electrodes induced only a very mild foreign body reaction and did not change the nerve shape over a 2-6 month implantation period. There were no changes in the motor and sensory nerve conduction tests, nociceptive responses and walking track pattern over follow-up, and no morphological evidence of axonal loss or demyelination, except in one case with partial demyelination of some large fibers after 6 months. By delivering single electrical pulses through the cuff electrodes graded recruitment curves of alpha-motor nerve fibers were obtained. Recruitment of all motor units was achieved with a mean charge density lower than 4 microC/cm(2) for a pulse width of 50 micros at the time of implantation as well as 45 days thereafter. These data indicate that the polyimide cuff electrode is a stable stimulating device, with physical properties and dimensions that avoid nerve compression or activity-induced axonal damage.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blood pressure control with selective vagal nerve stimulation and minimal side effects.

              Hypertension is the largest threat to patient health and a burden to health care systems. Despite various options, 30% of patients do not respond sufficiently to medical treatment. Mechanoreceptors in the aortic arch relay blood pressure (BP) levels through vagal nerve (VN) fibers to the brainstem and trigger the baroreflex, lowering the BP. Selective electrical stimulation of these nerve fibers reduced BP in rats. However, there is no technique described to localize and stimulate these fibers inside the VN without inadvertent stimulation of non-baroreceptive fibers causing side effects like bradycardia and bradypnea.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Neural Systems and Rehabilitation Engineering
                IEEE Trans. Neural Syst. Rehabil. Eng.
                Institute of Electrical and Electronics Engineers (IEEE)
                1534-4320
                1558-0210
                September 2017
                September 2017
                : 25
                : 9
                : 1653-1662
                Article
                10.1109/TNSRE.2016.2633005
                © 2017
                Product

                Comments

                Comment on this article