55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV-1, methamphetamine and astrocytes at neuroinflammatory Crossroads

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a popular psychostimulant, methamphetamine (METH) use leads to long-lasting, strong euphoric effects. While METH abuse is common in the general population, between 10 and 15% of human immunodeficiency virus-1 (HIV-1) patients report having abused METH. METH exacerbates the severity and onset of HIV-1-associated neurocognitive disorders (HAND) through direct and indirect mechanisms. Repetitive METH use impedes adherence to antiretroviral drug regimens, increasing the likelihood of HIV-1 disease progression toward AIDS. METH exposure also directly affects both innate and adaptive immunity, altering lymphocyte numbers and activity, cytokine signaling, phagocytic function and infiltration through the blood brain barrier. Further, METH triggers the dopamine reward pathway and leads to impaired neuronal activity and direct toxicity. Concurrently, METH and HIV-1 alter the neuroimmune balance and induce neuroinflammation, which modulates a wide range of brain functions including neuronal signaling and activity, glial activation, viral infection, oxidative stress, and excitotoxicity. Pathologically, reactive gliosis is a hallmark of both HIV-1- and METH-associated neuroinflammation. Significant commonality exists in the neurotoxic mechanisms for both METH and HAND; however, the pathways dysregulated in astroglia during METH exposure are less clear. Thus, this review highlights alterations in astrocyte intracellular signaling pathways, gene expression and function during METH and HIV-1 comorbidity, with special emphasis on HAND-associated neuroinflammation. Importantly, this review carefully evaluates interventions targeting astrocytes in HAND and METH as potential novel therapeutic approaches. This comprehensive overview indicates, without a doubt, that during HIV-1 infection and METH abuse, a complex dialog between all neural cells is orchestrated through astrocyte regulated neuroinflammation.

          Related collections

          Most cited references392

          • Record: found
          • Abstract: found
          • Article: not found

          Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism.

          Inflammation, a common denominator among the diverse list of neurodegenerative diseases, has recently been implicated as a critical mechanism responsible for the progressive nature of neurodegeneration. Microglia are the resident innate immune cells in the central nervous system and produce a barrage of factors (IL-1, TNFalpha, NO, PGE2, superoxide) that are toxic to neurons. Evidence supports that the unregulated activation of microglia in response to environmental toxins, endogenous proteins, and neuronal death results in the production of toxic factors that propagate neuronal injury. In the following review, we discuss the common thread of microglial activation across numerous neurodegenerative diseases, define current perceptions of how microglia are damaging neurons, and explain how the microglial response to neuronal damage results in a self-propelling cycle of neuron death.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.

            Chemokines are chemotactic cytokines that activate and direct the migration of leukocytes. There are two subfamilies, the CXC and the CC chemokines. We recently found that the CXC-chemokine stromal cell-derived factor-1 (SDF-1) is a highly efficacious lymphocyte chemoattractant. Chemokines act on responsive leukocyte subsets through G-protein-coupled seven-transmembrane receptors, which are also used by distinct strains of HIV-1 as cofactors for viral entry. Laboratory-adapted and some T-cell-line-tropic (T-tropic) primary viruses use the orphan chemokine receptor LESTR/fusin (also known as fusin), whereas macrophage-tropic primary HIV-1 isolates use CCR-5 and CCR-3 (refs 7-11), which are receptors for known CC chemokines. Testing of potential receptors demonstrated that SDF-1 signalled through, and hence 'adopted', the orphan receptor LESTR, which we therefore designate CXC-chemokine receptor-4 (CXCR-4). SDF-1 induced an increase in intracellular free Ca2+ and chemotaxis in CXCR-4-transfected cells. Because SDF-1 is a biological ligand for the HIV-1 entry cofactor LESTR, we tested whether it inhibited HIV-1. SDF-1 inhibited infection by T-tropic HIV-1 of HeLa-CD4 cells, CXCR-4 transfectants, and peripheral blood mononuclear cells (PBMCs), but did not affect CCR-5-mediated infection by macrophage-tropic (M-tropic) and dual-tropic primary HIV-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IL-13 effector functions.

              IL-13 was first recognized for its effects on B cells and monocytes, where it upregulated class II expression, promoted IgE class switching and inhibited inflammatory cytokine production. It was also thought to be functionally redundant with IL-4. However, studies conducted with knockout mice, neutralizing antibodies, and novel antagonists demonstrate that IL-13 possesses several unique effector functions that distinguish it from IL-4. Resistance to most gastrointestinal nematodes is mediated by type-2 cytokine responses, in which IL-13 plays a dominant role. By regulating cell-mediated immunity, IL-13 modulates resistance to intracellular organisms including Leishmania major, Leishmania mexicana, and Listeria monocytogenes. In the lung, IL-13 is the central mediator of allergic asthma, where it regulates eosinophilic inflammation, mucus secretion, and airway hyperresponsiveness. Manipulation of IL-13 effector function may also prove useful in the treatment of some cancers like B-cell chronic lymphocytic leukemia and Hodgkin's disease, where IL-13 modulates apoptosis or tumor cell growth. IL-13 can also inhibit tumor immunosurveillance. As such, inhibitors of IL-13 might be effective as cancer immunotherapeutics by boosting type-1-associated anti-tumor defenses. Finally, IL-13 was revealed as a potent mediator of tissue fibrosis in both schistosomiasis and asthma, which indicates that it is a key regulator of the extracellular matrix. The mechanisms that regulate IL-13 production and/or function have also been investigated, and IL-4, IL-12, IL-18, IFN-gamma, IL-10, TGF-beta, TNF-alpha, and the IL-4/IL-13 receptor complex play important roles. This review highlights the effector functions of IL-13 and describes multiple pathways for modulating its activity in vivo.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                27 October 2015
                2015
                : 6
                : 1143
                Affiliations
                Department of Cell Biology and Immunology, University of North Texas Health Science Center Fort Worth, TX, USA
                Author notes

                Edited by: Venkata Subba Rao Atluri, Florida International University, USA

                Reviewed by: Santhi Gorantla, University of Nebraska Medical Center, USA; Slava Rom, Temple University School of Medicine, USA

                *Correspondence: Anuja Ghorpade anuja.ghorpade@ 123456unthsc.edu

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2015.01143
                4621459
                26579077
                61a78faa-d390-4c76-b663-d7d60202f359
                Copyright © 2015 Borgmann and Ghorpade.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 August 2015
                : 05 October 2015
                Page count
                Figures: 1, Tables: 3, Equations: 0, References: 443, Pages: 31, Words: 27551
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: 1R01DA039789
                Categories
                Microbiology
                Review

                Microbiology & Virology
                neuroinflammation,astroglia,hiv,methamphetamine,neurocognitive impairment
                Microbiology & Virology
                neuroinflammation, astroglia, hiv, methamphetamine, neurocognitive impairment

                Comments

                Comment on this article