23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin relieves neuropathic pain after spinal nerve ligation via autophagy flux stimulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuropathic pain is a well‐known type of chronic pain caused by damage to the nervous system. Autophagy is involved in the development and/or progression of many diseases, including neuropathic pain. Emerging evidence suggests that metformin relieves neuropathic pain in several neuropathic pain models; however, metformin's cellular and molecular mechanism for pain relief remains unknown. In this study, we investigated the therapeutic effects of metformin on pain relief after spinal nerve ligation (SNL) and its underlying mechanism of autophagy regulation. Behavioural analysis, histological assessment, expression of c‐Fos and molecular biological changes, as well as ultrastructural features, were investigated. Our findings showed that the number of autophagosomes and expression of autophagy markers, such as LC3 and beclin1, were increased, while the autophagy substrate protein p62, as well as the ubiquitinated proteins, were accumulated in the ipsilateral spinal cord. However, metformin enhanced the expression of autophagy markers, while it abrogated the abundance of p62 and ubiquitinated proteins. Blockage of autophagy flux by chloroquine partially abolished the apoptosis inhibition and analgesic effects of metformin on SNL. Taken together, these results illustrated that metformin relieved neuropathic pain through autophagy flux stimulation and provided a new direction for metformin drug development to treat neuropathic pain.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Guidelines for the use and interpretation of assays for monitoring autophagy.

          In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis.

            Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. We undertook this study to evaluate the potential roles of Unc-51-like kinase 1 (ULK1), an inducer of autophagy, Beclin1, a regulator of autophagy, and microtubule-associated protein 1 light chain 3 (LC3), which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death. Expression of ULK1, Beclin1, and LC3 was analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA, using immunohistochemistry and Western blotting. Poly(ADP-ribose) polymerase (PARP) p85 expression was used to determine the correlation between cell death and autophagy. ULK1, Beclin1, and LC3 were constitutively expressed in normal human articular cartilage. ULK1, Beclin1, and LC3 protein expression was reduced in OA chondrocytes and cartilage, but these 3 proteins were strongly expressed in the OA cell clusters. In mouse knee joints, loss of glycosaminoglycans (GAGs) was observed at ages 9 months and 12 months and in the surgical OA model, 8 weeks after knee destabilization. Expression of ULK1, Beclin1, and LC3 decreased together with GAG loss, while PARP p85 expression was increased. Autophagy may be a protective or homeostatic mechanism in normal cartilage. In contrast, human OA and aging-related and surgically induced OA in mice are associated with a reduction and loss of ULK1, Beclin1, and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat.

              We attempted to develop an experimental animal model for peripheral neuropathic pain. Under sodium pentobarbital anesthesia, both the L5 and L6 spinal nerves (group 1) or the L5 spinal nerve alone (group 2) of one side of the rat were tightly ligated. For comparison, a parallel study was conducted with another group of rats (group 3) which received a partial tight sciatic nerve ligation, a paradigm developed previously as a neuropathy model. Withdrawal latencies to application of radiant heat to the foot were tested for the next 16 weeks in all 3 groups. Sensitivity of the hind paw to mechanical stimulation was tested with von Frey filaments. The general behavior of each rat was noted during the entire test period. Results suggested that the surgical procedure in all 3 groups produced a long-lasting hyperalgesia to noxious heat (at least 5 weeks) and mechanical allodynia (at least 10 weeks) of the affected foot. In addition, there were behavioral signs of the presence of spontaneous pain in the affected foot. Therefore, we believe we have developed an experimental animal model for peripheral neuropathy using tight ligations of spinal nerves. The model manifests the symptoms of human patients with causalgia and is compatible with a previously developed neuropathy model. The present model has two unique features. First, the surgical procedure is stereotyped. Second, the levels of injured and intact spinal segments are completely separated, allowing independent experimental manipulations of the injured and intact spinal segments in future experiments to answer questions regarding mechanisms underlying causalgia.
                Bookmark

                Author and article information

                Contributors
                yanhede@hotmail.com
                Journal
                J Cell Mol Med
                J. Cell. Mol. Med
                10.1111/(ISSN)1582-4934
                JCMM
                Journal of Cellular and Molecular Medicine
                John Wiley and Sons Inc. (Hoboken )
                1582-1838
                1582-4934
                19 November 2018
                February 2019
                : 23
                : 2 ( doiID: 10.1111/jcmm.2019.23.issue-2 )
                : 1313-1324
                Affiliations
                [ 1 ] Department of Orthopedics Division of Plastic and Hand Surgery The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University Wenzhou China
                [ 2 ] Joseph M. Still Burn and Reconstructive Center Jackson Mississippi
                Author notes
                [*] [* ] Correspondence

                Hede Yan, Department of Orthopedic Surgery (Division of Plastic and Hand Surgery), The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.

                Email: yanhede@ 123456hotmail.com

                Author information
                http://orcid.org/0000-0003-1276-3059
                Article
                JCMM14033
                10.1111/jcmm.14033
                6349176
                30451370
                61a86f29-0760-4eb3-a6e7-5b1197e71f76
                © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 December 2017
                : 07 October 2018
                : 26 October 2018
                Page count
                Figures: 7, Tables: 0, Pages: 12, Words: 19482
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81571185
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                jcmm14033
                February 2019
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.5.6 mode:remove_FC converted:28.01.2019

                Molecular medicine
                apoptosis,autophagy flux,metformin,neuropathic pain,spinal nerve ligation
                Molecular medicine
                apoptosis, autophagy flux, metformin, neuropathic pain, spinal nerve ligation

                Comments

                Comment on this article