31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting and retention enhancement of quantum dots decorated with amino acids in an invertebrate model organism

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The use of quantum dots (QDs) in biological imaging applications and targeted drug delivery is expected to increase. However, the efficiency of QDs in drug targeting needs to be improved. Here, we show that amino acids linked to CdTe QDs significantly increased the targeted transfer efficiency and biological safety in the invertebrate model Bombyx mori. Compared with bare QDs530, the transfer efficiency of Ala- and Gly-conjugated QDs (QDs530-Ala and QDs530-Gly) in circulatory system increased by 2.6 ± 0.3 and 1.5 ± 0.3 times, and increased by 7.8 ± 0.9 and 2.9 ± 0.2 times in target tissue silk glands, respectively, after 24 h of QDs exposure. Meanwhile, the amount of conjugated QDs decreased by (68.4 ± 4.4)% and (46.7 ± 9.1)% in the non-target tissue fat body, and the speed at which they entered non-target circulating blood cells significantly decreased. The resultant QDs530-Ala revealed a better structural integrity in tissues and a longer retention time in hemolymph than that of QDs530 after exposure via the dorsal vessel. On the other hand, QDs530-Ala significantly reduced the toxicity to hemocytes, silk gland, and fat body, and reduced the amount of reactive oxygen species (ROS) in tissues.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Minimal "Self" peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles.

          Foreign particles and cells are cleared from the body by phagocytes that must also recognize and avoid clearance of "self" cells. The membrane protein CD47 is reportedly a "marker of self" in mice that impedes phagocytosis of self by signaling through the phagocyte receptor CD172a. Minimal "Self" peptides were computationally designed from human CD47 and then synthesized and attached to virus-size particles for intravenous injection into mice that express a CD172a variant compatible with hCD47. Self peptides delay macrophage-mediated clearance of nanoparticles, which promotes persistent circulation that enhances dye and drug delivery to tumors. Self-peptide affinity for CD172a is near the optimum measured for human CD172a variants, and Self peptide also potently inhibits nanoparticle uptake mediated by the contractile cytoskeleton. The reductionist approach reveals the importance of human Self peptides and their utility in enhancing drug delivery and imaging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Designing multifunctional quantum dots for bioimaging, detection, and drug delivery.

            The emerging field of bionanotechnology aims at revolutionizing biomedical research and clinical practice via introduction of nanoparticle-based tools, expanding capabilities of existing investigative, diagnostic, and therapeutic techniques as well as creating novel instruments and approaches for addressing challenges faced by medicine. Quantum dots (QDs), semiconductor nanoparticles with unique photo-physical properties, have become one of the dominant classes of imaging probes as well as universal platforms for engineering of multifunctional nanodevices. Possessing versatile surface chemistry and superior optical features, QDs have found initial use in a variety of in vitro and in vivo applications. However, careful engineering of QD probes guided by application-specific design criteria is becoming increasingly important for successful transition of this technology from proof-of-concept studies towards real-life clinical applications. This review outlines the major design principles and criteria, from general ones to application-specific, governing the engineering of novel QD probes satisfying the increasing demands and requirements of nanomedicine and discusses the future directions of QD-focused bionanotechnology research (critical review, 201 references).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanocrystal targeting in vivo.

              Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                25 January 2016
                2016
                : 6
                : 19802
                Affiliations
                [1 ]School of Biology and Basic Medical Sciences, Medical College, Soochow University , Suzhou 215123, China
                [2 ]National Engineering Laboratory for Modern Silk (NESER), Soochow University , Suzhou 215123, China
                [3 ]Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , Suzhou 215123, China
                [4 ]Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Soochow University , Suzhou 215123, China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep19802
                10.1038/srep19802
                4726310
                26806642
                61ab7594-5344-4bec-8b0b-d34af093f8bf
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 July 2015
                : 07 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article