92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glucagon-Like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The glucagon-like peptide (GLP)-1 receptor (GLP-1R) is a class B G protein–coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secreted from three major tissues in humans, enteroendocrine L cells in the distal intestine, α cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a two-domain–binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidic GLP-1R agonists have been hampered, small-molecule modulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders.

          Related collections

          Most cited references462

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of rhodopsin: A G protein-coupled receptor.

          Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.
            • Record: found
            • Abstract: found
            • Article: not found

            GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.

            In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of β-cell apoptosis. Native GLP-1 is degraded within ~2-3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.
              • Record: found
              • Abstract: found
              • Article: not found

              Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus.

              In type-2 diabetes, the overall incretin effect is reduced. The present investigation was designed to compare insulinotropic actions of exogenous incretin hormones (gastric inhibitory peptide [GIP] and glucagon-like peptide 1 [GLP-1] [7-36 amide]) in nine type-2 diabetic patients (fasting plasma glucose 7.8 mmol/liter; hemoglobin A1c 6.3 +/- 0.6%) and in nine age- and weight-matched normal subjects. Synthetic human GIP (0.8 and 2.4 pmol/kg.min over 1 h each), GLP-1 [7-36 amide] (0.4 and 1.2 pmol/kg.min over 1 h each), and placebo were administered under hyperglycemic clamp conditions (8.75 mmol/liter) in separate experiments. Plasma GIP and GLP-1 [7-36 amide] concentrations (radioimmunoassay) were comparable to those after oral glucose with the low, and clearly supraphysiological with the high infusion rates. Both GIP and GLP-1 [7-36 amide] dose-dependently augmented insulin secretion (insulin, C-peptide) in both groups (P < 0.05). With GIP, the maximum effect in type-2 diabetic patients was significantly lower (by 54%; P < 0.05) than in normal subjects. With GLP-1 [7-36 amide] type-2 diabetic patients reached 71% of the increments in C-peptide of normal subjects (difference not significant). Glucagon was lowered during hyperglycemic clamps in normal subjects, but not in type-2 diabetic patients, and further by GLP-1 [7-36 amide] in both groups (P < 0.05), but not by GIP. In conclusion, in mild type-2 diabetes, GLP-1 [7-36 amide], in contrast to GIP, retains much of its insulinotropic activity. It also lowers glucagon concentrations.

                Author and article information

                Contributors
                Role: ASSOCIATE EDITOR
                Journal
                Pharmacol Rev
                Pharmacol. Rev
                pharmrev
                Pharmacol Rev
                PharmRev
                Pharmacological Reviews
                The American Society for Pharmacology and Experimental Therapeutics (Bethesda, MD )
                0031-6997
                1521-0081
                October 2016
                October 2016
                October 2016
                : 68
                : 4
                : 954-1013
                Affiliations
                [1]Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (C.d.G.); School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom (D.D.); Drug Discovery Biology Theme and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S., M.M.F.); Protein and Peptide Chemistry, Global Research, Novo Nordisk A/S, Måløv, Denmark (J.La.); Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona (L.J.M.); Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas (J.-M.A.); Department of Bioengineering, Bourns College of Engineering, University of California at Riverside, Riverside, California (J.Li.); National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (D.Y., C.Z., J.D., M.-W.W.); Heptares Therapeutics, BioPark, Welwyn Garden City, United Kingdom (A.J.H.B.); and School of Pharmacy, Fudan University, Zhangjiang High-Tech Park, Shanghai, China (M.-W.W.)
                Author notes
                Address correspondence to: Dr. Ming-Wei Wang, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shou Jing Road, Shanghai 201203, China. E-mail: mwwang@ 123456simm.ac.cn

                C.d.G., D.D., and D.W. contributed equally to this work.

                Article
                PHARMREV_011395
                10.1124/pr.115.011395
                5050443
                27630114
                61b2751a-15e1-4c6f-98a6-f68ba28ab788
                Copyright © 2016 by The Author(s)

                This is an open access article distributed under the CC BY-NC Attribution 4.0 International license.

                History
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 546, Pages: 60
                Categories
                Review Articles
                Custom metadata
                v1

                Comments

                Comment on this article

                Related Documents Log