26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eukaryotic Organisms in Extreme Acidic Environments, the Río Tinto Case

      review-article
      Life : Open Access Journal
      MDPI
      acidophiles, eukaryots, extremophiles, extreme environments, photosynthesis, Río Tinto

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A major issue in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons. Some are basic and revolve around the idea that extreme environments are believed to reflect early Earth conditions. Others are related to the biotechnological potential of extremophiles. In this regard, the study of extremely acidic environments has become increasingly important since environmental acidity is often caused by microbial activity. Highly acidic environments are relatively scarce worldwide and are generally associated with volcanic activity or mining operations. For most acidic environments, low pH facilitates metal solubility, and therefore acidic waters tend to have high concentrations of heavy metals. However, highly acidic environments are usually inhabited by acidophilic and acidotolerant eukaryotic microorganisms such as algae, amoebas, ciliates, heliozoan and rotifers, not to mention filamentous fungi and yeasts. Here, we review the general trends concerning the diversity and ecophysiology of eukaryotic acidophilic microorganims, as well as summarize our latest results on this topic in one of the largest extreme acidic rivers, Río Tinto (SW, Spain).

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Life in extreme environments.

          Each recent report of liquid water existing elsewhere in the Solar System has reverberated through the international press and excited the imagination of humankind. Why? Because in the past few decades we have come to realize that where there is liquid water on Earth, virtually no matter what the physical conditions, there is life. What we previously thought of as insurmountable physical and chemical barriers to life, we now see as yet another niche harbouring 'extremophiles'. This realization, coupled with new data on the survival of microbes in the space environment and modelling of the potential for transfer of life between celestial bodies, suggests that life could be more common than previously thought. Here we examine critically what it means to be an extremophile, and the implications of this for evolution, biotechnology and especially the search for life in the Universe.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microbial extremophiles at the limits of life.

            Prokaryotic extremophiles were the first representatives of life on Earth and they are responsible for the genesis of geological structures during the evolution and creation of all currently known ecosystems. Flexibility of the genome probably allowed life to adapt to a wide spectrum of extreme environments. As a result, modern prokaryotic diversity formed in a framework of physico-chemical factors, and it is composed of: thermophilic, psychrophilic, acidophilic, alkaliphilic, halophilic, barophilic, and radioresistant species. This artificial systematics cannot reflect the multiple actions of different environmental factors since one organism could unite characteristics of several extreme-groups. In this review we show the current status of studies in all fields of extremophiles and summarize the limits of life for different species of microbial extremophiles. We also discuss the finding of extremophiles from unusual places such as soils, and briefly review recent studies of microfossils in meteorites in the context of the significance of microbial extremophiles to Astrobiology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiology: eukaryotic diversity in Spain's River of Fire.

              The Rio Tinto, known by the Phoenicians as 'Ur-yero', or 'River of Fire', because of its deep red colour and high acidity, flows through the world's largest pyritic belt in southwestern Spain. Surprisingly, eukaryotic microbes are the principal contributors of biomass in this hostile river, which has a pH of 2 and contains much higher concentrations of heavy metals than are typically found in fresh waters. Here we show that the Rio Tinto shows an unexpected degree of eukaryotic diversity and includes new lineages that we have identified by sequence analysis of genes encoding small-subunit ribosomal RNAs. The diversity of these eukaryotes is much greater than that of prokaryotes, whose metabolism is responsible for the extreme environment.
                Bookmark

                Author and article information

                Journal
                Life (Basel)
                Life (Basel)
                life
                Life : Open Access Journal
                MDPI
                2075-1729
                04 July 2013
                September 2013
                : 3
                : 3
                : 363-374
                Affiliations
                Astrobiology Center, Spanish Institute for Aerospace Technologies, Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850 Madrid, Spain; E-Mail: aguileraba@ 123456cab.inta-csic.es ; Tel.: +34-915-206-461; Fax: +34-915-201-064
                Article
                life-03-00363
                10.3390/life3030363
                4187173
                25369810
                61be9107-4aa2-45f4-8023-02df0518dd9b
                © 2013 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 March 2013
                : 07 June 2013
                : 17 June 2013
                Categories
                Review

                acidophiles,eukaryots,extremophiles,extreme environments,photosynthesis,río tinto

                Comments

                Comment on this article