21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Self-Referential Encoding on Modules of Anticodon Pairs—Roots of the Biological Flow System

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The proposal that the genetic code was formed on the basis of (proto)tRNA Dimer-Directed Protein Synthesis is reviewed and updated. The tRNAs paired through the anticodon loops are an indication on the process. Dimers are considered mimics of the ribosomes—structures that hold tRNAs together and facilitate the transferase reaction, and of the translation process—anticodons are at the same time codons for each other. The primitive protein synthesis system gets stabilized when the product peptides are stable and apt to bind the producers therewith establishing a self-stimulating production cycle. The chronology of amino acid encoding starts with Glycine and Serine, indicating the metabolic support of the Glycine-Serine C1-assimilation pathway, which is also consistent with evidence on origins of bioenergetics mechanisms. Since it is not possible to reach for substrates simpler than C1 and compounds in the identified pathway are apt for generating the other central metabolic routes, it is considered that protein synthesis is the beginning and center of a succession of sink-effective mechanisms that drive the formation and evolution of the metabolic flow system. Plasticity and diversification of proteins construct the cellular system following the orientation given by the flow and implementing it. Nucleic acid monomers participate in bioenergetics and the polymers are conservative memory systems for the synthesis of proteins. Protoplasmic fission is the final sink-effective mechanism, part of cell reproduction, guaranteeing that proteins don’t accumulate to saturation, which would trigger inhibition.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions.

          At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs.

            Improved thermodynamic parameters for prediction of RNA duplex formation are derived from optical melting studies of 90 oligoribonucleotide duplexes containing only Watson-Crick base pairs. To test end or base composition effects, new sets of duplexes are included that have identical nearest neighbors, but different base compositions and therefore different ends. Duplexes with terminal GC pairs are more stable than duplexes with the same nearest neighbors but terminal AU pairs. Penalizing terminal AU base pairs by 0.45 kcal/mol relative to terminal GC base pairs significantly improves predictions of DeltaG degrees37 from a nearest-neighbor model. A physical model is suggested in which the differential treatment of AU and GC ends accounts for the dependence of the total number of Watson-Crick hydrogen bonds on the base composition of a duplex. On average, the new parameters predict DeltaG degrees37, DeltaH degrees, DeltaS degrees, and TM within 3.2%, 6.0%, 6.8%, and 1.3 degreesC, respectively. These predictions are within the limit of the model, based on experimental results for duplexes predicted to have identical thermodynamic parameters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity

              Phenotypic plasticity is ubiquitous and generally regarded as a key mechanism for enabling organisms to survive in the face of environmental change. Because no organism is infinitely or ideally plastic, theory suggests that there must be limits (for example, the lack of ability to produce an optimal trait) to the evolution of phenotypic plasticity, or that plasticity may have inherent significant costs. Yet numerous experimental studies have not detected widespread costs. Explicitly differentiating plasticity costs from phenotype costs, we re-evaluate fundamental questions of the limits to the evolution of plasticity and of generalists vs specialists. We advocate for the view that relaxed selection and variable selection intensities are likely more important constraints to the evolution of plasticity than the costs of plasticity. Some forms of plasticity, such as learning, may be inherently costly. In addition, we examine opportunities to offset costs of phenotypes through ontogeny, amelioration of phenotypic costs across environments, and the condition-dependent hypothesis. We propose avenues of further inquiry in the limits of plasticity using new and classic methods of ecological parameterization, phylogenetics and omics in the context of answering questions on the constraints of plasticity. Given plasticity's key role in coping with environmental change, approaches spanning the spectrum from applied to basic will greatly enrich our understanding of the evolution of plasticity and resolve our understanding of limits.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Life (Basel)
                Life (Basel)
                life
                Life
                MDPI
                2075-1729
                06 April 2017
                June 2017
                : 7
                : 2
                : 16
                Affiliations
                Laboratório de Biodiversidade e Evolução Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil; romeucardosoguimaraes@ 123456gmail.com or romeucg@ 123456icb.ufmg.br ; Tel.: +55-31-98897-6439; Fax: +55-31-3274-4988
                Article
                life-07-00016
                10.3390/life7020016
                5492138
                28383509
                61c1e177-8ba3-4242-b4cd-94b0456a1b0e
                © 2017 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 January 2017
                : 26 March 2017
                Categories
                Review

                genetic code,(proto)trna dimer-directed protein synthesis,self-reference,modularity,error-compensation,metabolism chronology,protein stability,punctuation

                Comments

                Comment on this article