13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification and Quantification of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Cells by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unless repaired, DNA damage can drive mutagenesis or cell death. DNA repair proteins may therefore be used as biomarkers in disease etiology or therapeutic response prediction. Thus, the accurate determination of DNA repair protein expression and genotype is of fundamental importance. Among DNA repair proteins involved in base excision repair, apurinic/apyrimidinic endonuclease 1 (APE1) is the major endonuclease in mammals and plays important roles in transcriptional regulation and modulating stress responses. Here, we present a novel approach involving LC-MS/MS with isotope-dilution to positively identify and accurately quantify APE1 in human cells and mouse tissue. A completely 15N-labeled full-length human APE1 was produced and used as an internal standard. Fourteen tryptic peptides of both human APE1 (hAPE1) and 15N-labeled hAPE1 were identified following trypsin digestion. These peptides matched the theoretical peptides expected from trypsin digestion and provided a statistically significant protein score that would unequivocally identify hAPE1. Using the developed methodology, APE1 was positively identified and quantified in nuclear and cytoplasmic extracts of multiple human cell lines and mouse liver using selected-reaction monitoring of typical mass transitions of the tryptic peptides. We also show that the methodology can be applied to the identification of hAPE1 variants found in the human population. The results describe a novel approach for the accurate measurement of wild-type and variant forms of hAPE1 in vivo, and ultimately for defining the role of this protein in disease development and treatment responses.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          DNA repair in mammalian cells: Base excision repair: the long and short of it.

          Base excision repair (BER) is the primary DNA repair pathway that corrects base lesions that arise due to oxidative, alkylation, deamination, and depurinatiation/depyrimidination damage. BER facilitates the repair of damaged DNA via two general pathways - short-patch and long-patch. The shortpatch BER pathway leads to a repair tract of a single nucleotide. Alternatively, the long-patch BER pathway produces a repair tract of at least two nucleotides. The BER pathway is initiated by one of many DNA glycosylases, which recognize and catalyze the removal of damaged bases. The completion of the BER pathway is accomplished by the coordinated action of at least three additional enzymes. These downstream enzymes carry out strand incision, gap-filling and ligation. The high degree of BER conservation between E. coli and mammals has lead to advances in our understanding of mammalian BER. This review will provide a general overview of the mammalian BER pathway. (Part of a Multi-author Review).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice.

            The DNA-binding activity of AP-1 proteins is modulated, in vitro, by a posttranslational mechanism involving reduction oxidation. This mode of regulation has been proposed to control both the transcriptional activity and the oncogenic potential of Fos and Jun. Previous studies revealed that reduction of oxidized Fos and Jun by a cellular protein, Ref-1, stimulates sequence-specific AP-1 DNA-binding activity. Ref-1, a bifunctional protein, is also capable of initiating the repair of apurinic/apyrymidinic sites in damaged DNA. The relationship between the redox and DNA repair activities of Ref-1 is intriguing; both activities have been suggested to play an important role in the cellular response to oxidative stress. To investigate the physiological function of Ref-1, we used a gene targeting strategy to generate mice lacking a functional ref-1 gene. We report here that heterozygous mutant mice develop into adulthood without any apparent abnormalities. In contrast, homozygous mutant mice, lacking a functional ref-1 gene, die during embryonic development. Detailed analysis indicates that death occurs following blastocyst formation, shortly after the time of implantation. Degeneration of the mutant embryos is clearly evident at embryonic day 5.5. These findings demonstrate that Ref-1 is essential for early embryonic development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells.

              Discovered as a DNA repair protein, Ape1 has been associated with other functions, notably redox regulation of transcription factors (Ref1 activity). Because deletion of the mouse gene produces embryonic lethality and stable Ape1-deficient cell lines have not been reported, there has been uncertainty about a possible vital cellular function of Ape1. We addressed this issue by using RNA interference (RNAi) in several human cell types. Strong downregulation of Ape1 stopped cell proliferation and activated apoptosis, which was correlated with accumulation of abasic DNA damage. These effects were reversed by expression of yeast Apn1 protein, which is structurally unrelated to Ape1 but shares enzymatic activity in repair of abasic sites (AP endonuclease). Because Apn1 would lack Ref1 activity or the protein interactions of Ape1, we conclude that the AP endonuclease activity is essential for cellular viability. Accumulation of abasic DNA damage from intrinsic sources appears sufficient to trigger cell death when Ape1-mediated repair is deficient.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                29 July 2013
                : 8
                : 7
                : e69894
                Affiliations
                [1 ]Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
                [2 ]Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
                [3 ]Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, United States of America
                University of Massachusetts Medical School, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MD GK PJ DMW. Performed the experiments: MD GK PJ PTR AT BCN ML. Analyzed the data: MD GK PJ BCN DMW. Contributed reagents/materials/analysis tools: MD PJ BCN DMW AT. Wrote the paper: MD. Obtained permission for use of cell lines: AT.

                Article
                PONE-D-13-18080
                10.1371/journal.pone.0069894
                3726725
                23922845
                61c826d8-9988-470e-8829-cf5870dcd997
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 3 May 2013
                : 13 June 2013
                Page count
                Pages: 16
                Funding
                This work was supported in part by the Intramural Research Program at the National Institutes of Health, National Institute on Aging. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biochemistry
                Nucleic Acids
                DNA
                DNA repair
                Proteins
                Molecular Cell Biology
                Nucleic Acids
                DNA
                DNA repair
                Proteomics
                Spectrometric Identification of Proteins
                Chemistry
                Analytical Chemistry
                Medicine
                Diagnostic Medicine
                Pathology
                General Pathology
                Biomarkers
                Oncology
                Cancer Detection and Diagnosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article