3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Universal Model for the Log-Normal Distribution of Elasticity in Polymeric Gels and Its Relevance to Mechanical Signature of Biological Tissues

      research-article
      1 , 2 , 3
      Biology
      MDPI
      log-normal distribution, atomic force microscopy, universal law

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Mechanical properties of biological tissues are increasingly recognized as important in biology. Atomic force microscopy (AFM) is one of the main tools used to assess elastic properties of various types of biological samples. It has been noted that elasticity values frequently follow a log-normal distribution. We propose in this communication a physical model explaining this fact, and we propose that distribution-type analysis could increase the information obtained from AFM studies on biological tissues.

          Abstract

          The mechanosensitivity of cells has recently been identified as a process that could greatly influence a cell’s fate. To understand the interaction between cells and their surrounding extracellular matrix, the characterization of the mechanical properties of natural polymeric gels is needed. Atomic force microscopy (AFM) is one of the leading tools used to characterize mechanically biological tissues. It appears that the elasticity (elastic modulus) values obtained by AFM presents a log-normal distribution. Despite its ubiquity, the log-normal distribution concerning the elastic modulus of biological tissues does not have a clear explanation. In this paper, we propose a physical mechanism based on the weak universality of critical exponents in the percolation process leading to gelation. Following this, we discuss the relevance of this model for mechanical signatures of biological tissues.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found

          Hallmarks of Cancer: The Next Generation

          The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding the tumor immune microenvironment (TIME) for effective therapy

            The clinical successes in immunotherapy have been both astounding and at the same time unsatisfactory. Countless patients with varied tumor types have seen pronounced clinical response with immunotherapeutic intervention; however, many more patients have experienced minimal or no clinical benefit when provided the same treatment. As technology has advanced, so has the understanding of the complexity and diversity of the immune context of the tumor microenvironment and its influence on response to therapy. It has been possible to identify different subclasses of immune environment that have an influence on tumor initiation and response and therapy; by parsing the unique classes and subclasses of tumor immune microenvironment (TIME) that exist within a patient’s tumor, the ability to predict and guide immunotherapeutic responsiveness will improve, and new therapeutic targets will be revealed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage biology in development, homeostasis and disease.

              Macrophages, the most plastic cells of the haematopoietic system, are found in all tissues and show great functional diversity. They have roles in development, homeostasis, tissue repair and immunity. Although tissue macrophages are anatomically distinct from one another, and have different transcriptional profiles and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this Review, we discuss how macrophages regulate normal physiology and development, and provide several examples of their pathophysiological roles in disease. We define the 'hallmarks' of macrophages according to the states that they adopt during the performance of their various roles, taking into account new insights into the diversity of their lineages, identities and regulation. It is essential to understand this diversity because macrophages have emerged as important therapeutic targets in many human diseases.
                Bookmark

                Author and article information

                Journal
                Biology (Basel)
                Biology (Basel)
                biology
                Biology
                MDPI
                2079-7737
                18 January 2021
                January 2021
                : 10
                : 1
                : 64
                Affiliations
                [1 ]Team Mechancobiology, Immunity and Cancer, CNRS UMR5309 Inserm U1209, Institute for Advanced Biosciences, 38700 La Tronche, France; arnaud.millet@ 123456inserm.fr
                [2 ]Grenoble-Alpes University, 38700 La Tronche, France
                [3 ]Clinical Research Department, University Hospital of Grenoble-Alpes, 38700 La Tronche, France
                Author information
                https://orcid.org/0000-0002-3547-7533
                Article
                biology-10-00064
                10.3390/biology10010064
                7830536
                33477413
                61c9284d-7d3a-4a64-b793-3d60ac21b805
                © 2021 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 December 2020
                : 15 January 2021
                Categories
                Communication

                log-normal distribution,atomic force microscopy,universal law

                Comments

                Comment on this article