29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Association of Mortality Hazard with Body Shape

      research-article
      1 , * ,   2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          A Body Shape Index (ABSI) had been derived from a study of the United States National Health and Nutrition Examination Survey (NHANES) 1999–2004 mortality data to quantify the risk associated with abdominal obesity (as indicated by a wide waist relative to height and body mass index). A national survey with longer follow-up, the British Health and Lifestyle Survey (HALS), provides another opportunity to assess the predictive power for mortality of ABSI. HALS also includes repeat observations, allowing estimation of the implications of changes in ABSI.

          Methods and Findings

          We evaluate ABSI z score relative to population normals as a predictor of all-cause mortality over 24 years of follow-up to HALS. We found that ABSI is a strong indicator of mortality hazard in this population, with death rates increasing by a factor of 1.13 (95% confidence interval, 1.09–1.16) per standard deviation increase in ABSI and a hazard ratio of 1.61 (1.40–1.86) for those with ABSI in the top 20% of the population compared to those with ABSI in the bottom 20%. Using the NHANES normals to compute ABSI z scores gave similar results to using z scores derived specifically from the HALS sample. ABSI outperformed as a predictor of mortality hazard other measures of abdominal obesity such as waist circumference, waist to height ratio, and waist to hip ratio. Moreover, it was a consistent predictor of mortality hazard over at least 20 years of follow-up. Change in ABSI between two HALS examinations 7 years apart also predicted mortality hazard: individuals with a given initial ABSI who had rising ABSI were at greater risk than those with falling ABSI.

          Conclusions

          ABSI is a readily computed dynamic indicator of health whose correlation with lifestyle and with other risk factors and health outcomes warrants further investigation.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Multimodel Inference: Understanding AIC and BIC in Model Selection

          K. Burnham (2004)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis.

            Estimates of the relative mortality risks associated with normal weight, overweight, and obesity may help to inform decision making in the clinical setting. To perform a systematic review of reported hazard ratios (HRs) of all-cause mortality for overweight and obesity relative to normal weight in the general population. PubMed and EMBASE electronic databases were searched through September 30, 2012, without language restrictions. Articles that reported HRs for all-cause mortality using standard body mass index (BMI) categories from prospective studies of general populations of adults were selected by consensus among multiple reviewers. Studies were excluded that used nonstandard categories or that were limited to adolescents or to those with specific medical conditions or to those undergoing specific procedures. PubMed searches yielded 7034 articles, of which 141 (2.0%) were eligible. An EMBASE search yielded 2 additional articles. After eliminating overlap, 97 studies were retained for analysis, providing a combined sample size of more than 2.88 million individuals and more than 270,000 deaths. Data were extracted by 1 reviewer and then reviewed by 3 independent reviewers. We selected the most complex model available for the full sample and used a variety of sensitivity analyses to address issues of possible overadjustment (adjusted for factors in causal pathway) or underadjustment (not adjusted for at least age, sex, and smoking). Random-effects summary all-cause mortality HRs for overweight (BMI of 25-<30), obesity (BMI of ≥30), grade 1 obesity (BMI of 30-<35), and grades 2 and 3 obesity (BMI of ≥35) were calculated relative to normal weight (BMI of 18.5-<25). The summary HRs were 0.94 (95% CI, 0.91-0.96) for overweight, 1.18 (95% CI, 1.12-1.25) for obesity (all grades combined), 0.95 (95% CI, 0.88-1.01) for grade 1 obesity, and 1.29 (95% CI, 1.18-1.41) for grades 2 and 3 obesity. These findings persisted when limited to studies with measured weight and height that were considered to be adequately adjusted. The HRs tended to be higher when weight and height were self-reported rather than measured. Relative to normal weight, both obesity (all grades) and grades 2 and 3 obesity were associated with significantly higher all-cause mortality. Grade 1 obesity overall was not associated with higher mortality, and overweight was associated with significantly lower all-cause mortality. The use of predefined standard BMI groupings can facilitate between-study comparisons.
              Bookmark
              • Record: found
              • Abstract: found
              • Book: not found

              Modeling Survival Data: Extending the Cox Model

              This is a book for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Its goal is to extend the toolkit beyond the basic triad provided by most statistical packages: the Kaplan-Meier estimator, log-rank test, and Cox regression model. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyse multiple/correlated event data using marginal and random effects (frailty) models. It covers the use of residuals and diagnostic plots to identify influential or outlying observations, assess proportional hazards and examine other aspects of goodness of fit. Other topics include time-dependent covariates and strata, discontinuous intervals of risk, multiple time scales, smoothing and regression splines, and the computation of expected survival curves. A knowledge of counting processes and martingales is not assumed as the early chapters provide an introduction to this area. The focus of the book is on actual data examples, the analysis and interpretation of the results, and computation. The methods are now readily available in SAS and S-Plus and this book gives a hands-on introduction, showing how to implement them in both packages, with worked examples for many data sets. The authors call on their extensive experience and give practical advice, including pitfalls to be avoided. Terry Therneau is Head of the Section of Biostatistics, Mayo Clinic, Rochester, Minnesota. He is actively involved in medical consulting, with emphasis in the areas of chronic liver disease, physical medicine, hematology, and laboratory medicine, and is an author on numerous papers in medical and statistical journals. He wrote two of the original SAS procedures for survival analysis (coxregr and survtest), as well as the majority of the S-Plus survival functions. Patricia Grambsch is Associate Professor in the Division of Biostatistics, School of Public Health, University of Minnesota. She has collaborated extensively with physicians and public health researchers in chronic liver disease, cancer prevention, hypertension clinical trials and psychiatric research. She is a fellow the American Statistical Association and the author of many papers in medical and statistical journals.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                20 February 2014
                : 9
                : 2
                : e88793
                Affiliations
                [1 ]Department of Civil Engineering, The City College of New York, New York, New York, United States of America
                [2 ]Alzohaili Medical Consultants, Southfield, Michigan, United States of America
                Tulane School of Public Health and Tropical Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NYK JCK. Performed the experiments: NYK JCK. Analyzed the data: NYK JCK. Contributed reagents/materials/analysis tools: NYK JCK. Wrote the paper: NYK JCK.

                Article
                PONE-D-13-36886
                10.1371/journal.pone.0088793
                3930607
                24586394
                61ca07c3-e34e-4749-beae-4fac9c102bf8
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 September 2013
                : 12 January 2014
                Page count
                Pages: 7
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Computer science
                Algorithms
                Mathematics
                Applied mathematics
                Algorithms
                Medicine
                Epidemiology
                Lifecourse epidemiology
                Global health
                Non-clinical medicine
                Health care policy
                Health risk analysis
                Socioeconomic aspects of health
                Nutrition
                Obesity
                Public health
                Behavioral and social aspects of health
                Health screening
                Socioeconomic aspects of health

                Uncategorized
                Uncategorized

                Comments

                Comment on this article