3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      A Novel Missense Mutation in Dax-1 with an Unusual Presentation of X-Linked Adrenal Hypoplasia Congenita

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A male presented at age 2.2 years with a 6-week history of intermittent vomiting and hyperpigmentation. Investigations showed salt wasting with hyperkalaemia, a grossly impaired cortisol response to ACTH stimulation, elevated renin and ACTH. Family history revealed that two maternal uncles had died soon after birth. A third uncle failed to thrive during infancy but improved with a course of cortisone, then being untreated until further investigation revealed adrenal insufficiency. A fourth uncle died aged 10 days, with urinary salt loss and hypoplastic adrenal glands at postmortem. Molecular studies on the proband, his mother, maternal grandmother, and surviving uncle showed a novel C to G substitution at nucleotide position 794 (missense mutation T265R) in the DAX1 (NR0B1) gene. The proband has responded well to steroid replacement but has proved sensitive to 9α-fludrocortisone treatment, developing hypertension on a dose of 133 µg/m<sup>2</sup>/day. At 8.8 years he was noted to have testicular volumes of 4 ml, despite no other evidence of secondary sexual development and prepubertal gonadotrophin levels. Novel features of this family include a novel DAX1 mutation, marked variability in age of presentation, hypertension on ‘standard’ doses of 9α-fludrocortisone and mild testicular enlargement.

          Related collections

          Most cited references 12

          • Record: found
          • Abstract: found
          • Article: not found

          Adrenal hypoplasia congenita with hypogonadotropic hypogonadism: evidence that DAX-1 mutations lead to combined hypothalmic and pituitary defects in gonadotropin production.

          Adrenal hypoplasia congenita (AHC) is an X-linked disorder that typically presents with adrenal insufficiency during infancy. Hypogonadotropic hypogonadism (HHG) has been identified as a component of this disorder in affected individuals who survive into childhood. Recently, AHC was shown to be caused by mutations in DAX-1, a protein that is structurally similar in its carboxyterminal region to orphan nuclear receptors. We studied two kindreds with clinical features of AHC and HHG. DAX-1 mutations were identified in both families. In the JW kindred, a single base deletion at nucleotide 1219 was accompanied by an additional base substitution that resulted in a frameshift mutation at codon 329 followed by premature termination. In the MH kindred, a GGAT duplication at codon 418 caused a frameshift that also resulted in truncation of DAX-1. Baseline luteinizing hormone (LIT), follicle-stimulating hormone (FSH), and free-alpha-subunit (FAS) levels were determined during 24 h of frequent (q10 min) venous sampling. In patient MH, baseline LH levels were low, but FAS levels were within the normal range. In contrast, in patient JW, the mean LH and FSH were within the normal range during baseline sampling, but LH secretion was erratic rather than showing typical pulses. FAS was apulsatile for much of the day, but a surge was seen over a 3-4-h period. Pulsatile gonadotropin releasing hormone (GnRH) (25 ng/kg) was administered every 2 h for 7 d to assess pituitary responsiveness to exogenous GnRH. MH did not exhibit a gonadotropin response to pulsatile GnRH. JW exhibited a normal response to the first pulse of GnRH, but there was no increase in FAS. In contrast to the priming effect of GnRH in GnRH-deficient patients with Kallmann syndrome, GnRH pulses caused minimal secretory responses of LH and no FAS responses in patient JW. The initial LH response in patient JW implies a deficiency in hypothalamic GnRH. On the other hand, the failure to respond to pulsatile GnRH is consistent with a pituitary defect in gonadotropin production. These two cases exemplify the phenotypic heterogeneity of AHC/HHG, and suggest that DAX-1 mutations impair gonadotropin production by acting at both the hypothalamic and pituitary levels.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Clinical and Functional Effects of Mutations in the DAX-1 Gene in Patients with Adrenal Hypoplasia Congenita

             A Reutens (1999)
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Missense Mutations Cluster within the Carboxyl-Terminal Region of DAX-1 and Impair Transcriptional Repression

               J C Achermann (2001)
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                2007
                June 2007
                16 February 2007
                : 68
                : 1
                : 32-37
                Affiliations
                aDepartment of Child Health and bFerguson-Smith Centre for Clinical Genetics, Royal Hospital for Sick Children, Yorkhill, Glasgow, cDepartment of Endocrinology, UCL Institute of Child Health, University College London, London, dStoke Mandeville Hospital, Aylesbury, and eWessex Regional Genetics Laboratory, Salisbury, UK
                Article
                99835 Horm Res 2007;68:32–37
                10.1159/000099835
                3479083
                17308433
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, References: 27, Pages: 6
                Categories
                Novel Insights from Clinical Practice

                Comments

                Comment on this article

                Similar content 76

                Cited by 7

                Most referenced authors 212