26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Two novel missense mutations in the myostatin gene identified in Japanese patients with Duchenne muscular dystrophy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Myostatin is a negative regulator of skeletal muscle growth. Truncating mutations in the myostatin gene have been reported to result in gross muscle hypertrophy. Duchenne muscular dystrophy (DMD), the most common lethal muscle wasting disease, is a result of an absence of muscle dystrophin. Although this disorder causes a rather uniform pattern of muscle wasting, afflicted patients display phenotypic variability. We hypothesized that genetic variation in myostatin is a modifier of the DMD phenotype.

          Methods

          We analyzed 102 Japanese DMD patients for mutations in the myostatin gene.

          Results

          Two polymorphisms that are commonly observed in Western countries, p.55A>T and p.153K>R, were not observed in these Japanese patients. An uncommon polymorphism of p.164E>K was uncovered in four cases; each patient was found to be heterozygous for this polymorphism, which had the highest frequency of the polymorphism observed in the Japanese patients. Remarkably, two patients were found to be heterozygous for one of two novel missense mutations (p.95D>H and p.156L>I). One DMD patient carrying a novel missense mutation of p.95D>H was not phenotypically different from the non-carriers. The other DMD patient was found to carry both a novel mutation (p.156L>I) and a known polymorphism (p.164E>K) in one allele, although his phenotype was not significantly modified. Any nucleotide change creating a target site for micro RNAs was not disclosed in the 3' untranslated region.

          Conclusion

          Our results indicate that heterozygous missense mutations including two novel mutations did not produce an apparent increase in muscle strength in Japanese DMD cases, even in a patient carrying two missense mutations.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals.

          Comprehensive identification of all functional elements encoded in the human genome is a fundamental need in biomedical research. Here, we present a comparative analysis of the human, mouse, rat and dog genomes to create a systematic catalogue of common regulatory motifs in promoters and 3' untranslated regions (3' UTRs). The promoter analysis yields 174 candidate motifs, including most previously known transcription-factor binding sites and 105 new motifs. The 3'-UTR analysis yields 106 motifs likely to be involved in post-transcriptional regulation. Nearly one-half are associated with microRNAs (miRNAs), leading to the discovery of many new miRNA genes and their likely target genes. Our results suggest that previous estimates of the number of human miRNA genes were low, and that miRNAs regulate at least 20% of human genes. The overall results provide a systematic view of gene regulation in the human, which will be refined as additional mammalian genomes become available.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

            Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies.

              Becker muscular dystrophy (BMD) often results from in-frame mutations of the dystrophin gene that allow production of an altered but partially functional protein. To address potential structure-function relationships for the various domains of dystrophin, we examined both the dystrophin gene and protein in 68 patients with abnormal dystrophin. Eighty-six percent of BMD patients with dystrophin of altered size have deletions or duplications, and the observed sizes of dystrophin fit well with predictions based on DNA data. Deletions within the amino-terminal domain I tended to result in low levels of dystrophin and a more severe phenotype. The phenotypes of patients with deletions or duplications in the central rod domain were more variable. This region can be divided into three portions based on differences in clinical presentations of patients. Deletions around exons 4553 were most common and generally caused typical BMD; however, phenotypic variability among patients with similar mutations suggests that epigenetic and/or environmental factors play an important role in determining the clinical progression. In contrast, deletions or duplications in the proximal portion of this domain tended to cause severe cramps and myalgia. Finally, loss of the middle of this region probably causes a very mild phenotype, as only one such patient was found and his only symptom was elevated serum creatine phosphokinase levels.
                Bookmark

                Author and article information

                Journal
                BMC Med Genet
                BMC Medical Genetics
                BioMed Central (London )
                1471-2350
                2007
                12 April 2007
                : 8
                : 19
                Affiliations
                [1 ]Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, 6500017, Japan
                Article
                1471-2350-8-19
                10.1186/1471-2350-8-19
                1855920
                17428346
                61cfef7b-f220-4a04-942a-a91e3452afdc
                Copyright © 2007 Nishiyama et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 October 2006
                : 12 April 2007
                Categories
                Research Article

                Genetics
                Genetics

                Comments

                Comment on this article