5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Identification and Expression Analysis of Auxin Response Factor (ARF) Gene Family in Longan ( Dimocarpus longan L.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Auxin response factor (ARF) is the key regulator involved in plant development. Despite their physiological importance identified in various woody plants, the functions of ARF genes in longan were still not clear. In this study, 17 longan ARF genes ( DlARF) were identified using the reference longan genome data. According to the phylogenetic relationships among longan, Arabidopsis and apple, DlARFs were divided into four classes. Most DlARFs showed a closer relationship with ARFs from apple than those from Arabidopsis. The analysis of gene structure and domain revealed high similarity of different ARF genes in the same class. Typical features of B3-type DNA binding domain (DBD) motif, Auxin Resp motifs, and a highly conserved C-terminal Phox and Bem1 (PB1) domain were present in all DlARFs except for DlARF-2,-3,-13 which lacked PBI domain. Expression profiles of 17 DlARF genes in longan different tissues showed that some DlARF genes were tissues-specific genes. Analysis of three longan transcriptomes showed seven DlARFs ( DlARF-1,-2,-6,-8,-9,-11,-16) had higher expression levels during floral bud differentiation of common longan and in the buds of ‘Sijimi’, suggesting these genes may promote floral bud differentiation in longan. Further qPCR analysis showed that among seven DlARF genes, the expression levels of DlARF-2,-6,-11,-16 increased significantly during the physiological differentiation stage of longan floral buds, confirming that they may play a role in flowering induction. Promoter sequence analysis revealed cis-elements related to flowering induction such as low-temperature responsiveness motif and circadian control motif. Motifs linked with hormone response for instance Auxin, MeJA, Gibberellin, and Abscisic acid were also found in promoters. This study provides a comprehensive overview of the ARF gene family in longan. Our findings could provide new insights into the complexity of the regulation of ARFs at the transcription level that may be useful to develop breeding strategies to improve development or promote flowering in longan.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis.

          Long-standing models propose that plant growth responses to light or gravity are mediated by asymmetric distribution of the phytohormone auxin. Physiological studies implicated a specific transport system that relocates auxin laterally, thereby effecting differential growth; however, neither the molecular components of this system nor the cellular mechanism of auxin redistribution on light or gravity perception have been identified. Here, we show that auxin accumulates asymmetrically during differential growth in an efflux-dependent manner. Mutations in the Arabidopsis gene PIN3, a regulator of auxin efflux, alter differential growth. PIN3 is expressed in gravity-sensing tissues, with PIN3 protein accumulating predominantly at the lateral cell surface. PIN3 localizes to the plasma membrane and to vesicles that cycle in an actin-dependent manner. In the root columella, PIN3 is positioned symmetrically at the plasma membrane but rapidly relocalizes laterally on gravity stimulation. Our data indicate that PIN3 is a component of the lateral auxin transport system regulating tropic growth. In addition, actin-dependent relocalization of PIN3 in response to gravity provides a mechanism for redirecting auxin flux to trigger asymmetric growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation.

            Pollination in flowering plants requires that anthers release pollen when the gynoecium is competent to support fertilization. We show that in Arabidopsis thaliana, two paralogous auxin response transcription factors, ARF6 and ARF8, regulate both stamen and gynoecium maturation. arf6 arf8 double-null mutant flowers arrested as infertile closed buds with short petals, short stamen filaments, undehisced anthers that did not release pollen and immature gynoecia. Numerous developmentally regulated genes failed to be induced. ARF6 and ARF8 thus coordinate the transition from immature to mature fertile flowers. Jasmonic acid (JA) measurements and JA feeding experiments showed that decreased jasmonate production caused the block in pollen release, but not the gynoecium arrest. The double mutant had altered auxin responsive gene expression. However, whole flower auxin levels did not change during flower maturation, suggesting that auxin might regulate flower maturation only under specific environmental conditions, or in localized organs or tissues of flowers. arf6 and arf8 single mutants and sesquimutants (homozygous for one mutation and heterozygous for the other) had delayed stamen development and decreased fecundity, indicating that ARF6 and ARF8 gene dosage affects timing of flower maturation quantitatively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana.

              In plants, both endogenous mechanisms and environmental signals regulate developmental transitions such as seed germination, induction of flowering, leaf senescence and shedding of senescent organs. Auxin response factors (ARFs) are transcription factors that mediate responses to the plant hormone auxin. We have examined Arabidopsis lines carrying T-DNA insertions in AUXIN RESPONSE FACTOR1 (ARF1) and ARF2 genes. We found that ARF2 promotes transitions between multiple stages of Arabidopsis development. arf2 mutant plants exhibited delays in several processes related to plant aging, including initiation of flowering, rosette leaf senescence, floral organ abscission and silique ripening. ARF2 expression was induced in senescing leaves. ARF2 regulated leaf senescence and floral organ abscission independently of the ethylene and cytokinin response pathways. arf1 mutations enhanced many arf2 phenotypes, indicating that ARF1 acts in a partially redundant manner with ARF2. However, unlike arf2 mutations, an arf1 mutation increased transcription of Aux/IAA genes in Arabidopsis flowers, supporting previous biochemical studies that indicated that ARF1 is a transcriptional repressor. Two other ARF genes, NPH4/ARF7 and ARF19, were also induced by senescence, and mutations in these genes enhanced arf2 phenotypes. NPH4/ARF7 and ARF19 function as transcriptional activators, suggesting that auxin may control senescence in part by activating gene expression.
                Bookmark

                Author and article information

                Journal
                Plants (Basel)
                Plants (Basel)
                plants
                Plants
                MDPI
                2223-7747
                08 February 2020
                February 2020
                : 9
                : 2
                : 221
                Affiliations
                [1 ]College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; pengyuan456@ 123456outlook.com (Y.P.); fangting@ 123456fafu.edu.cn (T.F.); zhangyiyong66@ 123456163.com (Y.Z.); zy15659121197@ 123456126.com (M.Z.)
                [2 ]Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou 350002, China
                Author notes
                [* ]Correspondence: lhzeng@ 123456hotmail.com
                [†]

                These authors contributed equally to this work.

                Article
                plants-09-00221
                10.3390/plants9020221
                7076634
                32046357
                61dcc799-b3aa-4ec2-8e23-79ae52168a07
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 January 2020
                : 05 February 2020
                Categories
                Article

                longan,arf,bioinformatics analysis,quantitative analysis,flowering

                Comments

                Comment on this article