9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Effects of Unoprostone and Endothelin 1 on L-Type Channel Currents in Human Trabecular Meshwork Cells

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The trabecular meshwork (TM) is a smooth muscle-like tissue with contractile properties and by this mechanisms involved in the regulation of aqueous humor outflow. Isopropyl unoprostone (Rescula<sup>®</sup>, Novartis Ophthalmics), a synthetic docosanoid, reduces intraocular pressure in glaucoma patients and normal subjects. In isolated TM strips, unoprostone reduces TM contractility in the presence of endothelin 1 (ET-1). However, the signal transduction pathway of unoprostone still remains unclear. Since L-type channel currents are known to influence the contractility of TM, we examined the effects of unoprostone and ET-1 on L-type channel currents of TM cells. Methods: The effects of unoprostone, ET-1 and the tyrosine kinase inhibitor herbimycin A on L-type channel currents of cultured human TM cells were investigated using the perforated patch configuration of the patch-clamp technique. Results: Application of ET-1 had no effect on L-type channel currents. Unoprostone led to a dose-dependent reduction of control currents. The effect of unoprostone is independent of ET-1. After preincubation of cells with herbimycin A, unoprostone had no effect on the L-type channel current amplitude. Human TM cells preincubated with herbimycin A showed a reduced current density compared with control cells. Both substances, unoprostone and herbimycin A, increased the inactivation time constant of L-type channel currents. Conclusion: We conclude that unoprostone reduces the activity of L-type Ca<sup>2+</sup> channels. This effect seems to be independent of ET-1. The signal transduction pathway seems to be mediated by tyrosine kinases.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          The regulation of trabecular meshwork and ciliary muscle contractility.

          Current models of aqueous humor outflow no longer treat trabecular meshwork (TM) as an inert tissue passively distended by the ciliary muscle (CM). Instead, ample evidence supports the theory that trabecular meshwork possess smooth muscle-like properties and is actively involved in the regulation of aqueous humor outflow and intraocular pressure. In this model, trabecular meshwork and ciliary muscle appear as functional antagonists, with ciliary muscle contraction leading to a distension of trabecular meshwork with subsequent reduction in outflow. and with trabecular meshwork contraction leading to the opposite effect. Smooth-muscle relaxing substances would therefore appear to be ideal candidates for glaucoma therapy with the dual goal of reducing intraocular pressure via the trabecular meshwork and of improving vascular perfusion of the optic nerve head. However, for such substances to effectively lower intraocular pressure, the effect on the ciliary muscle would have to he minimal. For this reason, more information is needed on the signalling processes involved in regulating trabecular meshwork and ciliary muscle contractility. This review attempts to outline current knowledge of signal transduction pathways leading to relaxation and contraction of ciliary muscle and trabecular meshwork. Pathways can be classified as involving or not involving changes of membrane voltage and of requiring or not requiring external calcium: possibly, other pathways exist. These different pathways involve different ion channels and isoforms of PKC and are expressed to a differing degree in ciliary muscle and trabecular meshwork, leading to differential responses when exposed to relaxing or contracting pharmacological agents. Some of these agents. like tyrosine kinase inhibitors and inhibitors of PKC. have been shown to relax trabecular meshwork while leaving ciliary muscle comparatively unaffected. This profile makes these substances appear as ideal drugs for simultaneously improving ocular outflow and retinal circulation, parameters that determine the time course of visual deterioration in glaucoma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelin receptor subtype B mediates synthesis of nitric oxide by cultured bovine endothelial cells.

            Endothelins (ET) produce endothelium-dependent vasodilation through nitric oxide (NO) synthesis. The present study was designed to elucidate the cellular mechanism by which ET induces synthesis and release of endothelium-derived NO by cultured bovine endothelial cells (EC). Binding studies revealed that bovine EC membrane had the binding sites of a novel agonist (BQ3020) for non-isopeptide-selective receptor subtype (ETB). Affinity labeling studies showed a major labeled band with the apparent molecular mass of 50 kD. Northern blot analysis demonstrated the expression of mRNA for ETB receptor. BQ3020 rapidly and dose dependently induced formation of inositol-1,4,5-triphosphate and increased intracellular Ca2+ concentrations in fura-2-loaded cells. Concomitantly, BQ3020 dose dependently stimulated production of both nitrate/nitrite (NOx) and cyclic GMP; a highly significant correlation existed between NOx and cGMP production. The stimulatory effect on NOx and cGMP production by ETB agonist was inhibited by NO synthase inhibitor monomethyl-L-arginine; this effect was reversed by coaddition of L-arginine, but not D-arginine. NOx and cGMP production stimulated by BQ3020 was inhibited by pretreatment with pertussis toxin. ETB agonist-induced NOx production was blocked by a calmodulin inhibitor and an intracellular Ca2+ chelator, but not by an extracellular Ca2+ chelator or a Ca2+ channel blocker. These data suggest that endothelins stimulate ETB receptor-mediated phosphoinositide breakdown via pertussis toxin-sensitive G-protein(s), which triggers release of intracellular Ca2+, thereby activating Ca2+/calmodulin-dependent NO synthase in EC.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              [6] Correction for liquid junction potentials in patch clamp experiments

                Bookmark

                Author and article information

                Journal
                ORE
                Ophthalmic Res
                10.1159/issn.0030-3747
                Ophthalmic Research
                S. Karger AG
                0030-3747
                1423-0259
                2005
                December 2005
                21 October 2005
                : 37
                : 6
                : 293-300
                Affiliations
                aAugenklinik und Hochschulambulanz, bInstitut für Klinische Physiologie, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; cNovartis Institutes for Biomedical Research, DA Neuroscience and Ophthalmology, Basel, Switzerland, and dExperimentelle Ophthalmologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
                Article
                87724 Ophthalmic Res 2005;37:293–300
                10.1159/000087724
                16118512
                61ec75e8-9a63-4d9b-9d38-8fb75a385e95
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 17 November 2004
                : 24 February 2005
                Page count
                Figures: 6, References: 31, Pages: 8
                Categories
                Original Paper

                Vision sciences,Ophthalmology & Optometry,Pathology
                Trabecular meshwork,Endothelin 1,Tyrosine kinases,L-type Ca2+ channels,Herbimycin A,Unoprostone

                Comments

                Comment on this article