13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-Term Fluctuations in Circalunar Beach Aggregations of the Box Jellyfish Alatina moseri in Hawaii, with Links to Environmental Variability

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The box jellyfish Alatina moseri forms monthly aggregations at Waikiki Beach 8–12 days after each full moon, posing a recurrent hazard to swimmers due to painful stings. We present an analysis of long-term (14 years: Jan 1998– Dec 2011) changes in box jellyfish abundance at Waikiki Beach. We tested the relationship of beach counts to climate and biogeochemical variables over time in the North Pacific Sub-tropical Gyre (NPSG). Generalized Additive Models ( GAM), Change-Point Analysis ( CPA), and General Regression Models ( GRM) were used to characterize patterns in box jellyfish arrival at Waikiki Beach 8–12 days following 173 consecutive full moons. Variation in box jellyfish abundance lacked seasonality, but exhibited dramatic differences among months and among years, and followed an oscillating pattern with significant periods of increase (1998–2001; 2006–2011) and decrease (2001–2006). Of three climatic and 12 biogeochemical variables examined, box jellyfish showed a strong, positive relationship with primary production, >2 mm zooplankton biomass, and the North Pacific Gyre Oscillation (NPGO) index. It is clear that that the moon cycle plays a key role in synchronizing timing of the arrival of Alatina moseri medusae to shore. We propose that bottom-up processes, likely initiated by inter-annual regional climatic fluctuations influence primary production, secondary production, and ultimately regulate food availability, and are therefore important in controlling the inter-annual changes in box jellyfish abundance observed at Waikiki Beach.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Jellyfish blooms in China: Dominant species, causes and consequences.

          Three jellyfish species, Aurelia aurita, Cyanea nozakii and Nemopilema nomurai, form large blooms in Chinese seas. We report on the distribution and increasing incidence of jellyfish blooms and their consequences in Chinese coastal seas and analyze their relationship to anthropogenically derived changes to the environment in order to determine the possible causes. A. aurita, C. nozakii and N. nomurai form blooms in the temperate Chinese seas including the northern East China Sea, Yellow Sea and Bohai Sea. N. nomurai forms offshore blooms while the other two species bloom mainly in inshore areas. Eutrophication, overfishing, habitat modification for aquaculture and climate change are all possible contributory factors facilitating plausible mechanisms for the proliferation of jellyfish blooms. In the absence of improvement in coastal marine ecosystem health, jellyfish blooms could be sustained and may even spread from the locations in which they now occur. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Speciation and phylogeography in the cosmopolitan marine moon jelly, Aurelia sp

            Background The cosmopolitan moon jelly Aurelia is characterized by high degrees of morphological and ecological plasticity, and subsequently by an unclear taxonomic status. The latter has been revised repeatedly over the last century, dividing the genus Aurelia in as many as 12 or as little as two species. We used molecular data and phenotypic traits to unravel speciation processes and phylogeographic patterns in Aurelia. Results Mitochondrial and nuclear DNA data (16S and ITS-1/5.8S rDNA) from 66 world-wide sampled specimens reveal star-like tree topologies, unambiguously differentiating 7 (mtDNA) and 8 (ncDNA) genetic entities with sequence divergences ranging from 7.8 to 14% (mtDNA) and 5 to 32% (ncDNA), respectively. Phylogenetic patterns strongly suggest historic speciation events and the reconstruction of at least 7 different species within Aurelia. Both genetic divergences and life history traits showed associations to environmental factors, suggesting ecological differentiation forced by divergent selection. Hybridization and introgression between Aurelia lineages likely occurred due to secondary contacts, which, however, did not disrupt the unambiguousness of genetic separation. Conclusions Our findings recommend Aurelia as a model system for using the combined power of organismic, ecological, and molecular data to unravel speciation processes in cosmopolitan marine organisms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nematocyst ratio and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp.

              This study examined differences in the nematocyst ratios between two species of Australian cubozoans. In Chiropsalmus sp., a species that feeds exclusively on shrimp, no changes in the ratio of the three groups of nematocyst present in the cnidome were detected with size of the individual animals. In Chironex fleckeri, the ratio of different types of nematocysts in the cnidome for small animals (less than 40 mm) was similar to that of Chiropsalmus sp. However, with an increase in body size in C. fleckeri, the nematocyst ratio changed, with mastigophores (nematocysts believed to hold the lethal venom component for prey) increasing in proportion. The change in cnidome ratio is correlated with a change in the prey of C. fleckeri with increased size. Small C. fleckeri appeared to feed exclusively on prawns, medium sized animals fed on fish and prawns and large animals fed predominantly on fish. An increase in the proportion of mastigophores (and presumably the lethal venom component) in the cnidome of C. fleckeri may also be responsible for why this species has caused numerous human fatalities, while the Australian Chiropsalmus sp. has not. Copyright 2002 Elsevier Science Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                23 October 2013
                : 8
                : 10
                : e77039
                Affiliations
                [1 ]Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
                [2 ]Center for Conservation Research & Training, Pacific Biosciences Research Center, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
                [3 ]Waikiki Aquarium, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
                [4 ]Ocean Safety and Lifeguard Services, City and County of Honolulu, Honolulu, Hawaii, United States of America
                [5 ]Bekesy Laboratory, Pacific Biosciences Research Center, and Department of Tropical Medicine, John A. Burns School of Medicine, University of Hawaii at Mānoa, Honolulu, Hawaii, United States of America
                University of Wales Swansea, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AAY GLC. Performed the experiments: GLC AAY LB. Analyzed the data: LMC. Wrote the paper: LMC BSH.

                Article
                PONE-D-13-19002
                10.1371/journal.pone.0077039
                3806728
                61f583dd-a963-48cd-bc94-6623511a384a
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 May 2013
                : 6 September 2013
                Page count
                Pages: 10
                Funding
                Field components of this project were partially supported by grants from the National Institutes of Health (U54 NS039406, P20 RR016453, G12 RR003061, P20 RR016453, R21 DA024444) and the Victoria S and Bradley L Geist Foundation of Hawaii Community Foundation (HCF 958935, 991879, 20001741, 20011908, 20061497, 20071368 and 47031) (AY). BSH and LMC were supported by the Oahu Army Natural Resources Program during preparation of this manuscript. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article