26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide family. Endoplasmic reticulum stress (ERS) has been implicated in the pathology of renal ischemia/reperfusion (IRI). In the present study, we investigated whether IMD could reduce ERS damage after renal ischemia.

          Methods

          The kidneys of SD rats were subjected to 45 min of warm ischemia followed by 24 h of reperfusion. The hypoxia/reoxygenation(H/R) model in NRK-52E cells consisted of hypoxia for 1 h and reoxygenation for 2 h. IMD was over-expressed in vivo and in vitro using the vector pcDNA3.1-IMD. The serum creatinine concentration and lactate dehydrogenase (LDH) activity in the plasma were determined. Histologic examinations of renal tissues were performed with PAS staining. Real-time PCR and Western blotting were used to determine the mRNA and protein levels, respectively. Additionally, ER staining was used to detect the ERS response.

          Results

          In the rat renal IRI model, we found that IMD gene transfer markedly improved renal function and pathology and decreased LDH activity and cell apoptosis compared with the kidneys that were transfected with the control plasmid. IMD significantly attenuated the ERS stress parameters compared with IRI group. Indeed, IMD down-regulated glucose-regulated protein 78 (GRP78), C/EBP homologous protein(CHOP), and caspase 12 protein and mRNA levels. Moreover, in the NRK-52E cell H/R model, IMD overexpression prevented the apoptosis induced by H/R. Furthermore, IMD ameliorated the ER structural changes and concomitantly decreased the levels of GRP78, CHOP and caspase-12.

          Conclusion

          This study revealed that IMD protects against renal IRI by suppressing ERS and ERS-related apoptosis.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Endoplasmic reticulum stress: signaling the unfolded protein response.

          The endoplasmic reticulum (ER) is the cellular site of newly synthesized secretory and membrane proteins. Such proteins must be properly folded and posttranslationally modified before exit from the organelle. Proper protein folding and modification requires molecular chaperone proteins as well as an ER environment conducive for these reactions. When ER lumenal conditions are altered or chaperone capacity is overwhelmed, the cell activates signaling cascades that attempt to deal with the altered conditions and restore a favorable folding environment. Such alterations are referred to as ER stress, and the response activated is the unfolded protein response (UPR). When the UPR is perturbed or not sufficient to deal with the stress conditions, apoptotic cell death is initiated. This review will examine UPR signaling that results in cell protective responses, as well as the mechanisms leading to apoptosis induction, which can lead to pathological states due to chronic ER stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of the unfolded protein response in cell death.

            Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER chaperones, GRP78 and Gadd153, play critical roles in cell survival or cell death as part of the UPR, which is regulated by three signaling pathways: PERK/ATF4, IRE1/XBP1 and ATF6. During the UPR, accumulated unfolded protein is either correctly refolded, or unsuccessfully refolded and degraded by the ubiquitin-proteasome pathway. When the unfolded protein exceeds a threshold, damaged cells are committed to cell death, which is mediated by ATF4 and ATF6, as well as activation of the JNK/AP-1/Gadd153-signaling pathway. Gadd153 suppresses activation of Bcl-2 and NF-kappaB. UPR-mediated cell survival or cell death is regulated by the balance of GRP78 and Gadd153 expression, which is coregulated by NF-kappaB in accordance with the magnitude of ER stress. Less susceptibility to cell death upon activation of the UPR may contribute to tumor progression and drug resistance of solid tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis.

              The 78-kDa glucose-regulated protein (GRP78) is localized in the endoplasmic reticulum (ER), and its expression is increased by environmental stressors in many types of nonneuronal cells. We report that levels of GRP78 are increased in cultured rat hippocampal neurons exposed to glutamate and oxidative insults (Fe2+ and amyloid beta-peptide) and that treatment of cultures with a GRP78 antisense oligodeoxynucleotide increases neuronal death following exposure to each insult. GRP78 antisense treatment enhanced apoptosis of differentiated PC12 cells following NGF withdrawal or exposure to staurosporine. Pretreatment of hippocampal cells with 2-deoxy-d-glucose, a potent inducer of GRP78 expression, protected neurons against excitotoxic and oxidative injury. GRP78 expression may function to suppress oxidative stress and stabilize calcium homeostasis because treatment with GRP78 antisense resulted in increased levels of reactive oxygen species and intracellular calcium following exposure to glutamate and oxidative insults in hippocampal neurons. Dantrolene (a blocker of ER calcium release), uric acid (an antioxidant), and zVAD-fmk (a caspase inhibitor) each protected neurons against the death-enhancing action of GRP78 antisense. The data suggest that ER stress plays a role in neuronal cell death induced by an array of insults and that GRP78 serves a neuroprotective function. Copyright 1999 Academic Press.
                Bookmark

                Author and article information

                Contributors
                wangyanhongmail@126.com
                jihutian429@163.com
                qiaoxi7347@163.com
                kunle6609@163.com
                285055160@qq.com
                zhangruijing_0105@163.com
                +86-351-4960667 , rongshanli13@163.com
                Journal
                BMC Nephrol
                BMC Nephrol
                BMC Nephrology
                BioMed Central (London )
                1471-2369
                23 October 2015
                23 October 2015
                2015
                : 16
                : 169
                Affiliations
                [ ]Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi China
                [ ]Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi China
                [ ]Department of Nephrology, the Affiliated People’s Hospital of Shanxi Medical University, Shanxi Provincial People’s Hospital, Shanxi Kidney Disease Institute, No. 29 Shuang Ta East Street, Taiyuan, 030012, Shanxi P. R. China
                Article
                157
                10.1186/s12882-015-0157-7
                4619099
                26498843
                61f7f79c-31dd-4210-8758-b7218e6b578f
                © Wang et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 July 2015
                : 2 October 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Nephrology
                intermedin,renal,ischemia-reperfusion injury,endoplasmic reticulum stress,apoptosis
                Nephrology
                intermedin, renal, ischemia-reperfusion injury, endoplasmic reticulum stress, apoptosis

                Comments

                Comment on this article