13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the central nervous systems of newborn-infected rats.

      Journal of Biology
      Amino Acid Sequence, Animals, Animals, Newborn, virology, Apoptosis, Borna Disease, metabolism, pathology, Borna disease virus, genetics, Cell Line, Central Nervous System, Cercopithecus aethiops, Mice, Mitochondria, Molecular Sequence Data, Rats, Trans-Activators, chemistry

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Borna disease virus (BDV) is a neurotropic member of the order Mononegavirales with noncytolytic replication and obligatory persistence in cultured cells and animals. Here we show that the accessory protein X of BDV represents the first mitochondrion-localized protein of an RNA virus that inhibits rather than promotes apoptosis induction. Rat C6 astroglioma cells persistently infected with wild-type BDV were significantly more resistant to death receptor-dependent and -independent apoptotic stimuli than uninfected cells or cells infected with a BDV mutant expressing reduced amounts of X. Confocal microscopy demonstrated that X colocalizes with mitochondria and expression of X from plasmid DNA rendered human 293T and mouse L929 cells resistant to apoptosis induction. A recombinant virus encoding a mutant X protein unable to associate with mitochondria (BDV-X(A6A7)) failed to block apoptosis in C6 cells. Furthermore, Lewis rats neonatally infected with BDV-X(A6A7) developed severe neurological symptoms and died around day 30 postinfection, whereas all animals infected with wild-type BDV remained healthy and became persistently infected. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining revealed a significant increase in the number of apoptotic cells in the brain of BDV-X(A6A7)-infected animals, whereas the numbers of CD3(+) T lymphocytes were comparable to those detected in animals infected with wild-type BDV. Our data thus indicate that inhibition of apoptosis by X promotes noncytolytic viral persistence and is required for the survival of cells in the central nervous system of BDV-infected animals.

          Related collections

          Author and article information

          Comments

          Comment on this article