31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm DNA fragmentation: a SWOT analysis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spermatozoa retrieved from the testis of men with high levels of sperm DNA fragmentation (SDF) in the neat semen tend to have better DNA quality. Given the negative impact of SDF on the outcomes of Assisted Reproductive Technology (ART), an increased interest has emerged about the use of testicular sperm for intracytoplasmic sperm injection (Testi-ICSI). In this article, we used a SWOT (strengths, weaknesses, opportunities, and threats) analysis to summarize the advantages and drawbacks of this intervention. The rationale of Testi-ICSI is bypass posttesticular DNA fragmentation caused by oxidative stress during sperm transit through the epididymis. Hence, oocyte fertilization by genomically intact testicular spermatozoa may be optimized, thus increasing the chances of creating a normal embryonic genome and the likelihood of achieving a live birth, as recently demonstrated in men with high SDF. However, there is still limited evidence as regards the clinical efficacy of Testi-ICSI, thus creating opportunities for further confirmatory clinical research as well as investigation of Testi-ICSI in clinical scenarios other than high SDF. Furthermore, Testi-ICSI can be compared to other laboratory preparation methods for deselecting sperm with damaged DNA. At present, the available literature supports the use of testicular sperm when performing ICSI in infertile couples whose male partners have posttesticular SDF. Due to inherent risks of sperm retrieval, Testi-ICSI should be offered when less invasive treatments for alleviating DNA damage have failed. A call for continuous monitoring is nonetheless required concerning the health of generated offspring and the potential complications of sperm retrieval.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios

          Sperm DNA fragmentation (SDF) has been generally acknowledged as a valuable tool for male fertility evaluation. While its detrimental implications on sperm function were extensively investigated, little is known about the actual indications for performing SDF analysis. This review delivers practice based recommendations on commonly encountered scenarios in the clinic. An illustrative description of the different SDF measurement techniques is presented. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. High SDF is also linked with recurrent spontaneous abortion (RSA) and can influence outcomes of different assisted reproductive techniques. Several studies have shown some benefit in using testicular sperm rather than ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with evidence of exposure to pollutants can benefit from sperm DNA testing as it can help reinforce the importance of lifestyle modification (e.g., cessation of cigarette smoking, antioxidant therapy), predict fertility and monitor the patient’s response to intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome.

            The sperm chromatin structure assay (SCSA) has been suggested as a predictor of fertility in vivo as well as in vitro. The available data however, have been based on limited numbers of treatments. We aimed to define the clinical role of SCSA in assisted reproduction. A total of 998 cycles [387 intrauterine insemination (IUI), 388 IVF and 223 ICSI] from 637 couples were included. SCSA results were expressed as DNA fragmentation index (DFI) and high DNA stainable (HDS) cell fractions. Outcome parameters were biochemical pregnancy (BP), clinical pregnancy (CP) and delivery (D). For IUI, the odds ratios (ORs) for BP, CP and D were significantly lower for couples with DFI >30% as compared with those with DFI 30% group, the results of ICSI were significantly better than those of IVF. DFI can be used as an independent predictor of fertility in couples undergoing IUI. As a result, we propose that all infertile men should be tested with SCSA as a supplement to the standard semen analysis. When DFI exceeds 30%, ICSI should be the method of choice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis.

              To review the mechanisms responsible for DNA fragmentation in human sperm, including those occurring during spermatogenesis and transport through the reproductive tract. The mechanisms examined include: apoptosis in the seminiferous tubule epithelium, defects in chromatin remodeling during the process of spermiogenesis, oxygen radical-induced DNA damage during sperm migration from the seminiferous tubules to the epididymis, the activation of sperm caspases and endonucleases, damage induced by chemotherapy and radiotherapy, and the effect of environmental toxicants. The different tests currently used for sperm DNA fragmentation analysis and the factors that determine the predictive value of sperm DNA fragmentation testing and their implications in the diagnosis and treatment of infertility are also discussed. Finally, we also scrutinize how the presence in the embryonic genome of DNA strand breaks or modifications of DNA nucleotides inherited from the paternal genome could impact the embryo and offspring. In particular we discuss how abnormal sperm could be dealt with by the oocyte and how sperm DNA abnormalities, which have not been satisfactorily repaired by the oocyte after fertilization, may interfere with normal embryo and fetal development. Sperm DNA can be modified through various mechanisms. The integrity of the paternal genome is therefore of paramount importance in the initiation and maintenance of a viable pregnancy both in a natural conception and in assisted reproduction. The need to diagnose sperm at a nuclear level is an area that needs further understanding so that we can improve treatment of the infertile couple. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Asian J Androl
                Asian J. Androl
                AJA
                Asian Journal of Andrology
                Medknow Publications & Media Pvt Ltd (India )
                1008-682X
                1745-7262
                Jan-Feb 2018
                18 April 2017
                : 20
                : 1
                : 1-8
                Affiliations
                [1 ]ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Av. Dr. Heitor Penteado 1464, Campinas, SP, 13075-460 Brazil
                [2 ]ORIGEN, Center for Reproductive Medicine, Rio de Janeiro, Brazil
                [3 ]Andrology Laboratory and Sperm Bank, IVI Foundation, Valencia, Spain
                Author notes
                Correspondence: Dr. SC Esteves ( s.esteves@ 123456androfert.com.br )
                Article
                AJA-20-1
                10.4103/aja.aja_7_17
                5753543
                28440264
                620be833-0e55-4a5a-9c07-ba266c9676c0
                Copyright: © The Author(s)(2017)

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 06 December 2016
                : 15 January 2017
                : 19 January 2017
                Categories
                Invited Review

                intracytoplasmic sperm injection,male infertility,sperm dna fragmentation,sperm retrieval,swot analysis,testicular sperm

                Comments

                Comment on this article