158
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Type I Interferon Protects against Pneumococcal Invasive Disease by Inhibiting Bacterial Transmigration across the Lung

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia, sepsis and meningitis and is associated with high morbidity and mortality. Type I interferon (IFN-I), whose contribution to antiviral and intracellular bacterial immunity is well established, is also elicited during pneumococcal infection, yet its functional significance is not well defined. Here, we show that IFN-I plays an important role in the host defense against pneumococci by counteracting the transmigration of bacteria from the lung to the blood. Mice that lack the type I interferon receptor ( Ifnar1 −/−) or mice that were treated with a neutralizing antibody against the type I interferon receptor, exhibited enhanced development of bacteremia following intranasal pneumococcal infection, while maintaining comparable bacterial numbers in the lung. In turn, treatment of mice with IFNβ or IFN-I-inducing synthetic double stranded RNA (poly(I:C)), dramatically reduced the development of bacteremia following intranasal infection with S. pneumoniae. IFNβ treatment led to upregulation of tight junction proteins and downregulation of the pneumococcal uptake receptor, platelet activating factor receptor (PAF receptor). In accordance with these findings, IFN-I reduced pneumococcal cell invasion and transmigration across epithelial and endothelial layers, and Ifnar1 −/− mice showed overall enhanced lung permeability. As such, our data identify IFN-I as an important component of the host immune defense that regulates two possible mechanisms involved in pneumococcal invasion, i.e. PAF receptor-mediated transcytosis and tight junction-dependent pericellular migration, ultimately limiting progression from a site-restricted lung infection to invasive, lethal disease.

          Author Summary

          Streptococcus pneumoniae infection is a leading cause of bacterial pneumonia and invasive diseases such as sepsis and meningitis, which are associated with high morbidity and mortality. Here we identified type I Interferons (IFN-I) as critical mediators that prevent the progression of a local lung infection with S. pneumoniae to invasive disease. We found that mice lacking the receptor for IFN-I, or which received antibodies that interfere with receptor activation, showed increased development of bacteremia upon lung infection with S. pneumoniae. Treating mice, or cell lines, with IFN-I protected against bacterial migration across epithelial and endothelial cell barriers, correlating with increased expression of tight junction proteins, which enhance the lung's barrier function, and reduced surface expression levels of platelet activating factor receptor, a host receptor known to be hijacked by bacteria for migration across the lung/blood and blood/brain barriers. Together, our results identify IFN-I as an important component of the host immune defense against invasion from a gram-positive, extracellular bacterium, possibly reflecting a general mechanism for the regulation of epithelial and endothelial barrier function that is critical for protection from pathogen invasion.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Type I interferons (alpha/beta) in immunity and autoimmunity.

          The significance of type I interferons (IFN-alpha/beta) in biology and medicine renders research on their activities continuously relevant to our understanding of normal and abnormal (auto) immune responses. This relevance is bolstered by discoveries that unambiguously establish IFN-alpha/beta, among the multitude of cytokines, as dominant in defining qualitative and quantitative characteristics of innate and adaptive immune processes. Recent advances elucidating the biology of these key cytokines include better definition of their complex signaling pathways, determination of their importance in modifying the effects of other cytokines, the role of Toll-like receptors in their induction, their major cellular producers, and their broad and diverse impact on both cellular and humoral immune responses. Consequently, the role of IFN-alpha/beta in the pathogenesis of autoimmunity remains at the forefront of scientific inquiry and has begun to illuminate the mechanisms by which these molecules promote or inhibit systemic and organ-specific autoimmune diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection

            T cell expansion and memory formation are generally more effective when elicited by live organisms than by inactivated vaccines. Elucidation of the underlying mechanisms is important for vaccination and therapeutic strategies. We show that the massive expansion of antigen-specific CD8 T cells that occurs in response to viral infection is critically dependent on the direct action of type I interferons (IFN-Is) on CD8 T cells. By examining the response to infection with lymphocytic choriomeningitis virus using IFN-I receptor–deficient (IFN-IR0) and –sufficient CD8 T cells adoptively transferred into normal IFN-IR wild-type hosts, we show that the lack of direct CD8 T cell contact with IFN-I causes >99% reduction in their capacity to expand and generate memory cells. The diminished expansion of IFN-IR0 CD8 T cells was not caused by a defect in proliferation but by poor survival during the antigen-driven proliferation phase. Thus, IFN-IR signaling in CD8 T cells is critical for the generation of effector and memory cells in response to viral infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NF-kappa B controls expression of inhibitor I kappa B alpha: evidence for an inducible autoregulatory pathway.

              The eukaryotic transcription factor nuclear factor-kappa B (NF-kappa B) participates in many parts of the genetic program mediating T lymphocyte activation and growth. Nuclear expression of NF-kappa B occurs after its induced dissociation from its cytoplasmic inhibitor I kappa B alpha. Phorbol ester and tumor necrosis factor-alpha induction of nuclear NF-kappa B is associated with both the degradation of performed I kappa B alpha and the activation of I kappa B alpha gene expression. Transfection studies indicate that the I kappa B alpha gene is specifically induced by the 65-kilodalton transactivating subunit of NF-kappa B. Association of the newly synthesized I kappa B alpha with p65 restores intracellular inhibition of NF-kappa B DNA binding activity and prolongs the survival of this labile inhibitor. Together, these results show that NF-kappa B controls the expression of I kappa B alpha by means of an inducible autoregulatory pathway.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2013
                November 2013
                7 November 2013
                : 9
                : 11
                : e1003727
                Affiliations
                [1]Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                University of California, San Francisco, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KSL HH VR. Performed the experiments: KSL LC. Analyzed the data: KSL. Contributed reagents/materials/analysis tools: ET. Wrote the paper: KSL HH VR.

                Article
                PPATHOGENS-D-13-00581
                10.1371/journal.ppat.1003727
                3820719
                24244159
                621440a6-65bf-484c-ad1c-317a319eb4d1
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 March 2013
                : 10 September 2013
                Page count
                Pages: 12
                Funding
                This work was supported by the NIH grant AI083443 to HH, NIH grant AI27913 to ET, and the American Lebanese Syrian Associated Charities. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article