13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ewing’s Sarcoma: An Analysis of miRNA Expression Profiles and Target Genes in Paraffin-Embedded Primary Tumor Tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular mechanism responsible for Ewing’s Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours.

          Ewing's sarcoma and related subtypes of primitive neuroectodermal tumours share a recurrent and specific t(11;22) (q24;q12) chromosome translocation, the breakpoints of which have recently been cloned. Phylogenetically conserved restriction fragments in the vicinity of EWSR1 and EWSR2, the genomic regions where the breakpoints of chromosome 22 and chromosome 11 are, respectively, have allowed identification of transcribed sequences from these regions and has indicated that a hybrid transcript might be generated by the translocation. Here we use these fragments to screen human complementary DNA libraries to show that the translocation alters the open reading frame of an expressed gene on chromosome 22 gene by substituting a sequence encoding a putative RNA-binding domain for that of the DNA-binding domain of the human homologue of murine Fli-1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions

            MicroRNAs (miRNAs) are small non-coding RNA molecules capable of negatively regulating gene expression to control many cellular mechanisms. The miRTarBase database (http://mirtarbase.mbc.nctu.edu.tw/) provides the most current and comprehensive information of experimentally validated miRNA-target interactions. The database was launched in 2010 with data sources for >100 published studies in the identification of miRNA targets, molecular networks of miRNA targets and systems biology, and the current release (2013, version 4) includes significant expansions and enhancements over the initial release (2010, version 1). This article reports the current status of and recent improvements to the database, including (i) a 14-fold increase to miRNA-target interaction entries, (ii) a miRNA-target network, (iii) expression profile of miRNA and its target gene, (iv) miRNA target-associated diseases and (v) additional utilities including an upgrade reminder and an error reporting/user feedback system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ribo-gnome: the big world of small RNAs.

              Small RNA guides--microRNAs, small interfering RNAs, and repeat-associated small interfering RNAs, 21 to 30 nucleotides in length--shape diverse cellular pathways, from chromosome architecture to stem cell maintenance. Fifteen years after the discovery of RNA silencing, we are only just beginning to understand the depth and complexity of how these RNAs regulate gene expression and to consider their role in shaping the evolutionary history of higher eukaryotes.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 April 2016
                May 2016
                : 17
                : 5
                : 656
                Affiliations
                [1 ]Unità Operativa Complessa (U.O.C.) Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy; elisabetta.armiraglio@ 123456asst-pini-cto.it (E.A.); andrea.dibernardo@ 123456asst-pini-cto.it (A.D.B.)
                [2 ]Dipartimento di Medicina, Sezione di Medicina Interna B, Università di Verona, Verona 37134, Italy; caterina.bason@ 123456univr.it
                [3 ]Dipartimento di Sanità Pubblica e Medicina di Comunità, Sezione di Epidemiologia e Statistica Medica, Università di Verona, Verona 37134, Italy; lucia.calciano@ 123456univr.it
                [4 ]Unità Operativa Complessa (U.O.C.) Chirurgia Ortopedica Oncologica, Azienda Socio Sanitaria Territoriale Centro Specialistico Ortopedico Traumatologico Gaetano Pini-CTO, Milano 20122, Italy; PrimoAndrea.Daolio@ 123456asst-pini-cto.it
                [5 ]Unità Operativa Complessa (U.O.C.) Immunoematologia-Medicina Trasfusionale e Laboratorio di Ematologia, Laboratorio di Ricerca “Cellule Staminali” Azienda Unità Sanitaria Locale (AUSL)-Ospedale Santo Spirito, Pescara 65125, Italy; martina.berardocco@ 123456gmail.com
                [6 ]Facoltà di Medicina Veterinaria, Università di Teramo, Teramo 64100, Italy; acolosimo@ 123456unite.it
                [7 ]Dipartimento di Oncologia Pediatrica, Fondazione-Istituto di Ricovero e Cura a Carattere Scientifico-(IRCCS) Istituto Nazionale dei Tumori, Milano 20133, Italy; Roberto.Luksch@ 123456istitutotumori.mi.it
                Author notes
                [* ]Correspondence: antonina.parafioriti@ 123456gpini.it (A.P.); annacberardi@ 123456yahoo.it (A.C.B.); Tel.: +39-025-8296-344 (A.P.); +39-333-4338-414 (A.C.B.)
                Article
                ijms-17-00656
                10.3390/ijms17050656
                4881482
                27144561
                62176c5a-f756-4fda-a01a-b75c83760155
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 March 2016
                : 25 April 2016
                Categories
                Article

                Molecular biology
                ewing’s sarcoma,micrornas,human mesenchymal stem cells,mirtarbase database
                Molecular biology
                ewing’s sarcoma, micrornas, human mesenchymal stem cells, mirtarbase database

                Comments

                Comment on this article