53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In utero exposure to endocrine-disrupting chemicals may contribute to testicular dysgenesis syndrome (TDS), a proposed constellation of increasingly common male reproductive tract abnormalities (including hypospadias, cryptorchidism, hypospermatogenesis, and testicular cancer). Male rats exposed in utero to certain phthalate plasticizers exhibit multinucleated germ cell (MNG) induction and suppressed steroidogenic gene expression and testosterone production in the fetal testis, causing TDS-consistent effects of hypospadias and cryptorchidism. Mice exposed to phthalates in utero exhibit MNG induction only. This disparity in response demonstrates a species-specific sensitivity to phthalate-induced suppression of fetal Leydig cell steroidogenesis. Importantly, ex vivo phthalate exposure of the fetal testis does not recapitulate the species-specific endocrine disruption, demonstrating the need for a new bioassay to assess the human response to phthalates.

          Objectives: In this study, we aimed to develop and validate a rat and mouse testis xenograft bioassay of phthalate exposure and examine the human fetal testis response.

          Methods: Fetal rat, mouse, and human testes were xenografted into immunodeficient rodent hosts, and hosts were gavaged with a range of phthalate doses over multiple days. Xenografts were harvested and assessed for histopathology and steroidogenic end points.

          Results: Consistent with the in utero response, phthalate exposure induced MNG formation in rat and mouse xenografts, but only rats exhibited suppressed steroidogenesis. Across a range of doses, human fetal testis xenografts exhibited MNG induction but were resistant to suppression of steroidogenic gene expression.

          Conclusions: Phthalate exposure of grafted human fetal testis altered fetal germ cells but did not reduce expression of genes that regulate fetal testosterone biosynthesis.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Identification in rats of a programming window for reproductive tract masculinization, disruption of which leads to hypospadias and cryptorchidism.

          Becoming a phenotypic male is ultimately determined by androgen-induced masculinization. Disorders of fetal masculinization, resulting in hypospadias or cryptorchidism, are common, but their cause remains unclear. Together with the adult-onset disorders low sperm count and testicular cancer, they can constitute a testicular dysgenesis syndrome (TDS). Although masculinization is well studied, no unifying concept explains normal male reproductive development and its abnormalities, including TDS. We exposed rat fetuses to either anti-androgens or androgens and showed that masculinization of all reproductive tract tissues was programmed by androgen action during a common fetal programming window. This preceded morphological differentiation, when androgen action was, surprisingly, unnecessary. Only within the programming window did blocking androgen action induce hypospadias and cryptorchidism and altered penile length in male rats, all of which correlated with anogenital distance (AGD). Androgen-driven masculinization of females was also confined to the same programming window. This work has identified in rats a common programming window in which androgen action is essential for normal reproductive tract masculinization and has highlighted that measuring AGD in neonatal humans could provide a noninvasive method to predict neonatal and adult reproductive disorders. Based on the timings in rats, we believe the programming window in humans is likely to be 8-14 weeks of gestation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects.

            Reproductive disorders of newborn (cryptorchidism, hypospadias) and young adult males (low sperm counts, testicular germ cell cancer) are common and/or increasing in incidence. It has been hypothesized that these disorders may comprise a testicular dysgenesis syndrome (TDS) with a common origin in fetal life. This has been supported by findings in an animal model of TDS involving fetal exposure to n(dibutyl) phthalate, as well as by new clinical studies. Recent advances in understanding from such studies have led to refinement of the TDS hypothesis, highlighting the central role that deficient androgen production/action during fetal testis development, may play in the origin of downstream disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Androgen action in the masculinization programming window and development of male reproductive organs.

              We have shown previously that deficient androgen action within a masculinization programming window (MPW; e15.5-e18.5 in rats) is important in the origin of male reproductive disorders and in programming male reproductive organ size, but that androgen action postnatally may be important to achieve this size. To further investigate importance of the MPW, we used two rat models, in which foetal androgen production or action was impaired during the MPW by exposing in utero to either di(n-butyl) phthalate (DBP) or to flutamide. Reduced anogenital distance (AGD) was used as a monitor of androgen production/action during the MPW. Offspring were evaluated in early puberty (Pnd25) to establish if reproductive organ size was altered. The testes, penis, ventral prostate (VP) and seminal vesicles (SV) were weighed and penis length measured. Both DBP and flutamide exposure in the MPW significantly reduced penis, VP and SV size along with AGD at Pnd25; AGD and organ size were highly correlated. In DBP-, but not flutamide-, exposed animals, testis weight was also reduced and correlated with AGD. Intratesticular testosterone was also measured in control and DBP-exposed males during (e17.5) or after (e21.5) the MPW and related to AGD at e21.5. To evaluate the importance of postnatal androgen action in reproductive organ growth, the effect of combinations of prenatal and postnatal maternal treatments on AGD and penis size at Pnd25 was evaluated. In prenatally DBP-exposed animals, further postnatal exposure to either DBP or flutamide significantly reduced AGD and penis size in comparison with prenatal DBP exposure alone. In comparison, rats exposed postnatally to testosterone propionate after prenatal vehicle-exposure showed considerable increase in these parameters vs. controls. In conclusion, we show that the size of all male reproductive organs is programmed by androgen exposure in the MPW, but that growth towards this size is dependent on androgen action postnatally.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                17 April 2012
                August 2012
                : 120
                : 8
                : 1137-1143
                Affiliations
                [1 ]Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
                [2 ]The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
                [3 ]Alfred I. duPont Hospital for Children, Wilmington, Delaware, USA
                [4 ]Food and Drug Administration, Center for Veterinary Medicine, Rockville, Maryland, USA
                Author notes
                Address correspondence to K. Boekelheide, Brown University, Box G-E5, Providence, RI 02912 USA. Telephone: (401) 863-1783. Fax: (401) 863-9008. E-mail: kim_boekelheide@ 123456brown.edu
                Article
                ehp.1104711
                10.1289/ehp.1104711
                3440087
                22511013
                621ae1dd-2414-49f4-8b31-8344732795a7
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 07 November 2011
                : 17 April 2012
                Categories
                Research

                Public health
                human,xenotransplant,phthalate,animal model,mouse,rat,testicular dysgenesis,seminiferous cords,multinucleated germ cells,fetal testis

                Comments

                Comment on this article