428
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miRBase: integrating microRNA annotation and deep-sequencing data

      research-article
      , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15 000 microRNA gene loci in over 140 species, and over 17 000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          miRecords: an integrated resource for microRNA–target interactions

          MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DIANA-microT web server: elucidating microRNA functions through target prediction

            Computational microRNA (miRNA) target prediction is one of the key means for deciphering the role of miRNAs in development and disease. Here, we present the DIANA-microT web server as the user interface to the DIANA-microT 3.0 miRNA target prediction algorithm. The web server provides extensive information for predicted miRNA:target gene interactions with a user-friendly interface, providing extensive connectivity to online biological resources. Target gene and miRNA functions may be elucidated through automated bibliographic searches and functional information is accessible through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The web server offers links to nomenclature, sequence and protein databases, and users are facilitated by being able to search for targeted genes using different nomenclatures or functional features, such as the genes possible involvement in biological pathways. The target prediction algorithm supports parameters calculated individually for each miRNA:target gene interaction and provides a signal-to-noise ratio and a precision score that helps in the evaluation of the significance of the predicted results. Using a set of miRNA targets recently identified through the pSILAC method, the performance of several computational target prediction programs was assessed. DIANA-microT 3.0 achieved there with 66% the highest ratio of correctly predicted targets over all predicted targets. The DIANA-microT web server is freely available at www.microrna.gr/microT.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The database of experimentally supported targets: a functional update of TarBase

              TarBase5.0 is a database which houses a manually curated collection of experimentally supported microRNA (miRNA) targets in several animal species of central scientific interest, plants and viruses. MiRNAs are small non-coding RNA molecules that exhibit an inhibitory effect on gene expression, interfering with the stability and translational efficiency of the targeted mature messenger RNAs. Even though several computational programs exist to predict miRNA targets, there is a need for a comprehensive collection and description of miRNA targets with experimental support. Here we introduce a substantially extended version of this resource. The current version includes more than 1300 experimentally supported targets. Each target site is described by the miRNA that binds it, the gene in which it occurs, the nature of the experiments that were conducted to test it, the sufficiency of the site to induce translational repression and/or cleavage, and the paper from which all these data were extracted. Additionally, the database is functionally linked to several other relevant and useful databases such as Ensembl, Hugo, UCSC and SwissProt. The TarBase5.0 database can be queried or downloaded from http://microrna.gr/tarbase.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2011
                January 2011
                30 October 2010
                30 October 2010
                : 39
                : Database issue , Database issue
                : D152-D157
                Affiliations
                Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
                Author notes
                *To whom correspondence should be addressed. Tel: +44 161 2755673; Fax: +44 161 2755082; Email: sam.griffiths-jones@ 123456manchester.ac.uk
                Article
                gkq1027
                10.1093/nar/gkq1027
                3013655
                21037258
                6222f30e-c82b-4f2b-bb24-07ccce0b1eb9
                © The Author(s) 2010. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 September 2010
                : 10 October 2010
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article