15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Waveguide Characterization of S-Band Microwave Mantle Cloaks for Dielectric and Conducting Objects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present the experimental characterization of mantle cloaks designed so as to minimize the electromagnetic scattering of moderately-sized dielectric and conducting cylinders at S-band microwave frequencies. Our experimental setup is based on a parallel-plate waveguide system, which emulates a two-dimensional plane-wave scattering scenario, and allows the collection of near-field maps as well as more quantitative assessments in terms of global scattering observables (e.g., total scattering width). Our results, in fairly good agreement with full-wave numerical simulations, provide a further illustration of the mantle- cloak mechanism, including its frequency-sensitivity, and confirm its effectiveness both in restoring the near-field impinging wavefront around the scatterer, and in significantly reducing the overall scattering.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Hiding Under the Carpet: a New Strategy for Cloaking

          A new type of cloak is discussed: one that gives all cloaked objects the appearance of a flat conducting sheet. It has the advantage that none of the parameters of the cloak is singular and can in fact be made isotropic. It makes broadband cloaking in the optical frequencies one step closer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atomically thin surface cloak using graphene monolayers.

            We discuss here the use of a graphene monolayer to realize the concept of "cloaking by a surface", proposing the thinnest possible mantle cloak with operation in the far-infrared and terahertz (THz) regime. We show that an atomically thin graphene monolayer may drastically suppress the scattering of planar and cylindrical objects and, at the same time, preserve moderately broad bandwidth of operation. In addition, we exploit the large tunability of the graphene conductivity to provide active, dynamically tunable invisibility cloaks and versatile THz switching devices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional broadband omnidirectional acoustic ground cloak.

              The control of sound propagation and reflection has always been the goal of engineers involved in the design of acoustic systems. A recent design approach based on coordinate transformations, which is applicable to many physical systems, together with the development of a new class of engineered materials called metamaterials, has opened the road to the unconstrained control of sound. However, the ideal material parameters prescribed by this methodology are complex and challenging to obtain experimentally, even using metamaterial design approaches. Not surprisingly, experimental demonstration of devices obtained using transformation acoustics is difficult, and has been implemented only in two-dimensional configurations. Here, we demonstrate the design and experimental characterization of an almost perfect three-dimensional, broadband, and, most importantly, omnidirectional acoustic device that renders a region of space three wavelengths in diameter invisible to sound.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                25 January 2016
                2016
                : 6
                : 19716
                Affiliations
                [1 ]CNR-SPIN and Department of Physics, University of Naples “Federico II” , I-80125 Naples, Italy
                [2 ]Waves Group, Department of Engineering, University of Sannio , I-82100 Benevento, Italy
                [3 ]MBDA Italia s.p.a. , I-80070 Bacoli (NA), Italy
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep19716
                10.1038/srep19716
                4726170
                26803985
                623c19dc-795f-4809-88c5-7419407fef7f
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 October 2015
                : 10 December 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article