0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Interplay between the cellular autophagy machinery and positive-stranded RNA viruses

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autophagy is a conserved cellular process that acts as a key regulator in maintaining cellular homeostasis. Recent studies implicate an important role for autophagy in infection and immunity by removing invading pathogens and through modulating innate and adaptive immune responses. However, several pathogens, notably some positive-stranded RNA viruses, have subverted autophagy to their own ends. In this review, we summarize the current understanding of how viruses with a positive-stranded RNA genome interact with the host autophagy machinery to control their replication and spread. We review the mechanisms underlying the induction of autophagy and discuss the pro- and anti-viral functions of autophagy and the potential mechanisms involved.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Selective autophagy mediated by autophagic adapter proteins.

          Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lysosomes and autophagy in cell death control.

            Lysosomal hydrolases participate in the digestion of endocytosed and autophagocytosed material inside the lysosomal/autolysosomal compartment in acute cell death when released into the cytosol and in cancer progression following their release into the extracellular space. Lysosomal alterations are common in cancer cells. The increased expression and altered trafficking of lysosomal enzymes participates in tissue invasion, angiogenesis and sensitization to the lysosomal death pathway. But lysosomal heat-shock protein 70 locally prevents lysosomal-membrane permeabilization. Similarly, alterations in the autophagic compartment are linked to carcinogenesis and resistance to chemotherapy. Targeting these pathways might constitute a novel approach to cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modification of intracellular membrane structures for virus replication

              Key Points Plus-stranded RNA viruses induce large membrane structures that might support the replication of their genomes. Similarly, cytoplasmic replication of poxviruses (large DNA viruses) occurs in associated membranes. These membranes originate from the endoplasmic reticulum (ER) or endosomes. Membrane vesicles that support viral replication are induced by a number of RNA viruses. Similarly, the poxvirus replication site is surrounded by a double-membraned cisterna that is derived from the ER. Analogies to autophagy have been proposed since the finding that autophagy cellular processes involve the formation of double-membrane vesicles. However, molecular evidence to support this hypothesis is lacking. Membrane association of the viral replication complex is mediated by the presence of one or more viral proteins that contain sequences which associate with, or integrate into, membranes. Replication-competent membranes might contain viral or cellular proteins that contain amphipathic helices, which could mediate the membrane bending that is required to form spherical vesicles. Whereas poxvirus DNA replication occurs inside the ER-enclosed site, for most RNA viruses the topology of replication is not clear. Preliminary results for some RNA viruses suggest that their replication could also occur inside double-membrane vesicles. We speculate that cytoplasmic replication might occur inside sites that are 'enwrapped' by an ER-derived cisterna, and that these cisternae are open to the cytoplasm. Thus, RNA and DNA viruses could use a common mechanism for replication that involves membrane wrapping by cellular cisternal membranes. We propose that three-dimensional analyses using high-resolution electron-microscopy techniques could be useful for addressing this issue. High-throughput small-interfering-RNA screens should also shed light on molecular requirements for virus-induced membrane modifications.
                Bookmark

                Author and article information

                Journal
                Acta Biochim Biophys Sin (Shanghai)
                Acta Biochim. Biophys. Sin. (Shanghai)
                abbs
                abbs
                Acta Biochimica et Biophysica Sinica
                Oxford University Press
                1672-9145
                1745-7270
                May 2012
                16 February 2012
                : 44
                : 5
                : 375-384
                Affiliations
                Department of Pathology & Laboratory Medicine, UBC James Hogg Research Centre , Institute for Heart + Lung Health , St Paul's Hospital , University of British Columbia , Vancouver, BC V6Z 1Y6, Canada
                Author notes
                [* ]Correspondence address. Tel: +1-604-682-2344 ext. 62847; Fax: +1-604-806-9274; E-mail: honglin.luo@ 123456hli.ubc.ca
                Article
                gms010
                10.1093/abbs/gms010
                7110239
                22343377
                6245e62e-8a65-4265-8ae7-190e9f26ffed
                © The Author 2012. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 14 December 2011
                : 13 January 2012
                Categories
                Review
                Editor's Choice

                autophagy,positive-stranded rna viruses,autophagosome,p62/sqstm1,double-membrane vesicle,xenophagy

                Comments

                Comment on this article