5
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Link between insulin resistance and skeletal muscle extracellular matrix remodeling

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle is the main metabolic tissue responsible for glucose homeostasis in the body. It is surrounded by the extracellular matrix (ECM) consisting of three layers: epimysium, perimysium, and endomysium. ECM plays an important role in the muscle, as it provides integrity and scaffolding cells. The observed disturbances in this structure are related to the abnormal remodeling of the ECM (through an increase in the concentration of its components). ECM rearrangement may impair insulin action by increasing the physical barrier to insulin transport and reducing insulin transport into muscle cells as well as by directly inhibiting insulin action through integrin signaling. Thus, improper ECM remodeling may contribute to the development of insulin resistance (IR) and related comorbidities. In turn, IR-associated conditions may further aggravate disturbances of ECM in skeletal muscle. This review describes the major components of the ECM that are necessary for its proper function. Particular attention was also paid to receptors (integrins) involved in the signaling of metabolic pathways. Finally, changes in ECM components in the context of clinical and animal studies are discussed. This article will help the reader to systematize knowledge related to the ECM and to better understand the relationship between ECM remodeling and IR, and its role in the pathogenesis of T2DM. The information in this article presents the concept of the role of ECM and its remodeling in the pathogenesis of IR, which may contribute to developing new therapeutic solutions.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Integrins: bidirectional, allosteric signaling machines.

          In their roles as major adhesion receptors, integrins signal across the plasma membrane in both directions. Recent structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways. Long-range conformational changes couple these functions via allosteric equilibria.
            • Record: found
            • Abstract: found
            • Article: not found

            Structure and function of the skeletal muscle extracellular matrix.

            The skeletal muscle extracellular matrix (ECM) plays an important role in muscle fiber force transmission, maintenance, and repair. In both injured and diseased states, ECM adapts dramatically, a property that has clinical manifestations and alters muscle function. Here we review the structure, composition, and mechanical properties of skeletal muscle ECM; describe the cells that contribute to the maintenance of the ECM; and, finally, overview changes that occur with pathology. New scanning electron micrographs of ECM structure are also presented with hypotheses about ECM structure–function relationships. Detailed structure–function relationships of the ECM have yet to be defined and, as a result, we propose areas for future study.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Skeletal Muscle Extracellular Matrix – What Do We Know About Its Composition, Regulation, and Physiological Roles? A Narrative Review

              Skeletal muscle represents the largest body-composition component in humans. In addition to its primary function in the maintenance of upright posture and the production of movement, it also plays important roles in many other physiological processes, including thermogenesis, metabolism and the secretion of peptides for communication with other tissues. Research attempting to unveil these processes has traditionally focused on muscle fibers, i.e., the contractile muscle cells. However, it is a frequently overlooked fact that muscle fibers reside in a three-dimensional scaffolding that consists of various collagens, glycoproteins, proteoglycans, and elastin, and is commonly referred to as extracellular matrix (ECM). While initially believed to be relatively inert, current research reveals the involvement of ECM cells in numerous important physiological processes. In interaction with other cells, such as fibroblasts or cells of the immune system, the ECM regulates muscle development, growth and repair and is essential for effective muscle contraction and force transmission. Since muscle ECM is highly malleable, its texture and, consequently, physiological roles may be affected by physical training and disuse, aging or various diseases, such as diabetes. With the aim to stimulate increased efforts to study this still poorly understood tissue, this narrative review summarizes the current body of knowledge on (i) the composition and structure of the ECM, (ii) molecular pathways involved in ECM remodeling, (iii) the physiological roles of muscle ECM, (iv) dysregulations of ECM with aging and disease as well as (v) the adaptations of muscle ECM to training and disuse.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                14 March 2023
                14 March 2023
                01 May 2023
                : 12
                : 5
                : e230023
                Affiliations
                [1 ]Department of Prophylaxis of Metabolic Diseases , Bialystok, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
                Author notes
                Correspondence should be addressed to M Straczkowski: m.straczkowski@ 123456pan.olsztyn.pl
                Author information
                http://orcid.org/0000-0001-5833-2305
                Article
                EC-23-0023
                10.1530/EC-23-0023
                10160556
                36917038
                624cf8c7-d0ff-4a59-a059-2b1588f61d86
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 23 February 2023
                : 14 March 2023
                Categories
                Review

                skeletal muscle,ecm remodeling,insulin resistance,metabolic diseases

                Comments

                Comment on this article

                Related Documents Log