21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant Hormones in Phytoplasma Infected Plants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phytoplasmas are bacterial plant pathogens that need a plant host and an insect vector for their spread and survival. In plants, the physiological responses that phytoplasmas trigger result in symptom development through effects on hormonal, nutritional, and stress signaling pathways, and the interactions between these. In this review, recent advances on the involvement of plant hormones together with their known and deduced roles in plants infected with phytoplasmas are discussed. Several studies have directly, or in many cases indirectly, addressed plant hormone systems in phytoplasma-infected plants. These have provided accumulating evidence that phytoplasmas extensively affect plant hormone pathways. Phytoplasmas thus, with disturbing complex plant hormone networks, suppress plant immunity and modify plant structure, while optimizing their nutrient acquisition and facilitating their colonization of the plants, and their dissemination among plants by their insect vectors.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Systemic acquired resistance: turning local infection into global defense.

          Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functions of microRNAs in plant stress responses.

            The discovery of microRNAs (miRNAs) as gene regulators has led to a paradigm shift in the understanding of post-transcriptional gene regulation in plants and animals. miRNAs have emerged as master regulators of plant growth and development. Evidence suggesting that miRNAs play a role in plant stress responses arises from the discovery that miR398 targets genes with known roles in stress tolerance. In addition, the expression profiles of most miRNAs that are implicated in plant growth and development are significantly altered during stress. These later findings imply that attenuated plant growth and development under stress may be under the control of stress-responsive miRNAs. Here we review recent progress in the understanding of miRNA-mediated plant stress tolerance. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gibberellin biosynthesis and its regulation.

              The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                17 April 2019
                2019
                : 10
                : 477
                Affiliations
                Department of Biotechnology and Systems Biology, National Institute of Biology , Ljubljana, Slovenia
                Author notes

                Edited by: Dominik K. Großkinsky, University of Copenhagen, Denmark

                Reviewed by: Rita Musetti, University of Udine, Italy; Ivo Tosevski, Institute for Plant Protection and Environment (IZBIS), Serbia; Wei Wei, Northeast Area (USDA-ARS), United States

                *Correspondence: Marina Dermastia marina.dermastia@ 123456nib.si

                This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2019.00477
                6478762
                31057582
                62625c0a-ff30-4fdf-8e7b-813356ac3634
                Copyright © 2019 Dermastia.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 February 2019
                : 28 March 2019
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 135, Pages: 15, Words: 12360
                Funding
                Funded by: Javna Agencija za Raziskovalno Dejavnost RS 10.13039/501100004329
                Award ID: V4-1103
                Award ID: J4-0813
                Award ID: J1-7151
                Award ID: P4-0165
                Categories
                Plant Science
                Review

                Plant science & Botany
                hormone crosstalk,host plant,jasmonic acid,phytoplasma,plant hormone,salicylic acid

                Comments

                Comment on this article