2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Involvement of adenosine triphosphate-binding cassette subfamily B member 1 in the augmentation of triacylglycerol excretion by Propionibacterium acnes in differentiated hamster sebocytes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          New developments in our understanding of acne pathogenesis and treatment.

          Interest in sebaceous gland physiology and its diseases is rapidly increasing. We provide a summarized update of the current knowledge of the pathobiology of acne vulgaris and new treatment concepts that have emerged in the last 3 years (2005-2008). We have tried to answer questions arising from the exploration of sebaceous gland biology, hormonal factors, hyperkeratinization, role of bacteria, sebum, nutrition, cytokines and toll-like receptors (TLRs). Sebaceous glands play an important role as active participants in the innate immunity of the skin. They produce neuropeptides, excrete antimicrobial peptides and exhibit characteristics of stem cells. Androgens affect sebocytes and infundibular keratinocytes in a complex manner influencing cellular differentiation, proliferation, lipogenesis and comedogenesis. Retention hyperkeratosis in closed comedones and inflammatory papules is attributable to a disorder of terminal keratinocyte differentiation. Propionibacterium acnes, by acting on TLR-2, may stimulate the secretion of cytokines, such as interleukin (IL)-6 and IL-8 by follicular keratinocytes and IL-8 and -12 in macrophages, giving rise to inflammation. Certain P. acnes species may induce an immunological reaction by stimulating the production of sebocyte and keratinocyte antimicrobial peptides, which play an important role in the innate immunity of the follicle. Qualitative changes of sebum lipids induce alteration of keratinocyte differentiation and induce IL-1 secretion, contributing to the development of follicular hyperkeratosis. High glycemic load food and milk may induce increased tissue levels of 5alpha-dihydrotestosterone. These new aspects of acne pathogenesis lead to the considerations of possible customized therapeutic regimens. Current research is expected to lead to innovative treatments in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Review of the Innate Immune Response in Acne vulgaris: Activation of Toll-Like Receptor 2 in Acne Triggers Inflammatory Cytokine Responses

            Acne vulgaris is a common disorder that affects 40–50 million people in the USA alone. The pathogenesis of acne is multifactorial, including hormonal, microbiological and immunological mechanisms. One of the factors that contributes to the pathogenesis of acne is Propionibacterium acnes ; yet, the molecular mechanism by which P. acnes induces inflammation is not known. Recent studies have demonstrated that microbial agents trigger cytokine responses via Toll-like receptors (TLRs). TLRs are pattern recognition receptors that recognize pathogen-associated molecular patterns conserved among microorganisms and elicit immune responses. We investigated whether TLR2 mediates P. acnes- induced cytokine production in acne. Using transfectant cells we found that TLR2 was sufficient for NF-ĸB activation in response to P. acnes . In addition, peritoneal macrophages from wild-type, TLR6 knockout and TLR1 knockout mice, but not TLR2 knockout mice, produced IL-6 in response to P. acnes. P. acnes induced activation of IL-12 and IL-8 production by primary human monocytes, and this cytokine production was inhibited by anti-TLR2-blocking antibody. Finally, in acne lesions, TLR2 was expressed on the cell surface of macrophages surrounding pilosebaceous follicles. These data suggest that P. acnes triggers inflammatory cytokine responses in acne by activation of TLR2. As such, TLR2 may provide a novel target for the treatment of this common skin disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal changes in sebum excretion and propionibacterial colonization in preadolescent children with and without acne.

              It is generally accepted that the onset of sebum secretion occurs before puberty in boys and girls as a result of increasing androgen output during the adrenarche. Propionibacteria are part of the commensal skin flora and, in adults, are found in highest numbers in sebum-rich areas of skin such as the face and upper trunk. Previous studies investigating the association between sebum output and propionibacterial population densities have been cross-sectional and have been carried out mainly in adults. The purpose of this study was to examine the association between the onset of sebum secretion and expansion of the propionibacterial flora in a population of early adolescent children aged between 5.5 and 12 years, and to evaluate the temporal relation between the two factors longitudinally. In addition, the study aimed to evaluate the change with age in sebaceous gland activity and propionibacterial colonization on the skin and in the nares between children who developed acne and those who did not. Biannual examinations of volunteers included age, pubertal (Tanner) stage, weight and height, lesion counting on the face, propionibacterial colonization on the skin surface and in the nares and sebum secretion. A longitudinal analysis based on all observations of each subject throughout the study was applied to examine the change of sebaceous gland activity and propionibacterial colonization with age and pubertal stage. A generalized estimating equation was used with a 0.05 level of significance. The commencement of sebum production was asynchronous, with only a small number of follicles initially starting to secrete sebum onto the skin surface. The number of secreting follicles and the area of sebum increased with age and pubertal stage (P < 0.0001, P < 0.05, respectively). Numbers of propionibacteria on the skin tended to increase after the age of 9 years, but not significantly so. In contrast, numbers of propionibacteria in the nares increased significantly with age (P < 0.0001) but not with pubertal maturation. Children who developed acne had higher sebum output and propionibacterial densities with increasing age than children who did not develop acne. This effect was significant for the increase of total sebum area with age in pubertal children (P = 0.0023), the increase in number of secreting follicles with age (P = 0.020) in prepubertal children, and the increase in propionibacteria densities in the nares with age (P = 0.0005) in pubertal children. Sebaceous gland activity and propionibacterial numbers on the skin surface remained unchanged with increasing age in children who did not develop acne. Propionibacterial population densities in the nares increased with age regardless of the development of acne. Onset of sebum secretion and consequently expansion of the propionibacterial skin flora occur earlier in children who develop acne than in children of the same age and pubertal status who do not develop acne. These observations suggest that postponing the onset of sebum production or the expansion of the propionibacterial skin flora until after puberty may represent ways of preventing the disease or minimizing its severity. Determinants of propionibacterial colonization on the skin and in the nares may be different.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Dermatology
                J Dermatol
                Wiley
                03852407
                December 2017
                December 2017
                July 17 2017
                : 44
                : 12
                : 1404-1407
                Affiliations
                [1 ]Department of Biochemistry; School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
                [2 ]Department of; Microbiology; School of Pharmacy; Tokyo University of Pharmacy and Life Sciences; Tokyo Japan
                Article
                10.1111/1346-8138.13963
                62643075-6d92-49a8-8811-ff08c6f60091
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article