65
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antibodies targeting the spike protein of SARS-CoV-2 present a promising approach to combat the COVID19 pandemic; however, concerns remain that mutations can yield antibody resistance. We investigate the development of resistance against four antibodies to the spike protein that potently neutralize SARS-CoV-2, individually as well as when combined into cocktails. These antibodies remain effective against spike variants that have arisen in the human population. However, novel spike mutants rapidly appeared following in vitro passaging in the presence of individual antibodies, resulting in loss of neutralization; such escape also occurred with combinations of antibodies binding diverse but overlapping regions of the spike protein. Importantly, escape mutants were not generated following treatment with a non-competing antibody cocktail.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2

          How SARS-CoV-2 binds to human cells Scientists are racing to learn the secrets of severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2), which is the cause of the pandemic disease COVID-19. The first step in viral entry is the binding of the viral trimeric spike protein to the human receptor angiotensin-converting enzyme 2 (ACE2). Yan et al. present the structure of human ACE2 in complex with a membrane protein that it chaperones, B0AT1. In the context of this complex, ACE2 is a dimer. A further structure shows how the receptor binding domain of SARS-CoV-2 interacts with ACE2 and suggests that it is possible that two trimeric spike proteins bind to an ACE2 dimer. The structures provide a basis for the development of therapeutics targeting this crucial interaction. Science, this issue p. 1444
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2

            Summary The recent emergence of a novel coronavirus (SARS-CoV-2) in China has caused significant public health concerns. Recently, ACE2 was reported as an entry receptor for SARS-CoV-2. In this study, we present the crystal structure of the C-terminal domain of SARS-CoV-2 (SARS-CoV-2-CTD) spike (S) protein in complex with human ACE2 (hACE2), which reveals a hACE2-binding mode similar overall to that observed for SARS-CoV. However, atomic details at the binding interface demonstrate that key residue substitutions in SARS-CoV-2-CTD slightly strengthen the interaction and lead to higher affinity for receptor binding than SARS-RBD. Additionally, a panel of murine monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs) against SARS-CoV-S1/receptor-binding domain (RBD) were unable to interact with the SARS-CoV-2 S protein, indicating notable differences in antigenicity between SARS-CoV and SARS-CoV-2. These findings shed light on the viral pathogenesis and provide important structural information regarding development of therapeutic countermeasures against the emerging virus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody

              Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged coronavirus that is responsible for the current pandemic of coronavirus disease 2019 (COVID-19), which has resulted in more than 3.7 million infections and 260,000 deaths as of 6 May 20201,2. Vaccine and therapeutic discovery efforts are paramount to curb the pandemic spread of this zoonotic virus. The SARS-CoV-2 spike (S) glycoprotein promotes entry into host cells and is the main target of neutralizing antibodies. Here we describe several monoclonal antibodies that target the S glycoprotein of SARS-CoV-2, which we identified from memory B cells of an individual who was infected with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003. One antibody (named S309) potently neutralizes SARS-CoV-2 and SARS-CoV pseudoviruses as well as authentic SARS-CoV-2, by engaging the receptor-binding domain of the S glycoprotein. Using cryo-electron microscopy and binding assays, we show that S309 recognizes an epitope containing a glycan that is conserved within the Sarbecovirus subgenus, without competing with receptor attachment. Antibody cocktails that include S309 in combination with other antibodies that we identified further enhanced SARS-CoV-2 neutralization, and may limit the emergence of neutralization-escape mutants. These results pave the way for using S309 and antibody cocktails containing S309 for prophylaxis in individuals at a high risk of exposure or as a post-exposure therapy to limit or treat severe disease.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                SCIENCE
                Science (New York, N.y.)
                American Association for the Advancement of Science
                0036-8075
                1095-9203
                15 June 2020
                : eabd0831
                Affiliations
                [1]Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
                Author notes
                [* ]Corresponding author. Email: christos.kyratsous@ 123456regeneron.com
                Author information
                https://orcid.org/0000-0001-7179-8679
                https://orcid.org/0000-0003-1224-4988
                https://orcid.org/0000-0002-1494-9765
                https://orcid.org/0000-0003-4826-4606
                https://orcid.org/0000-0002-3295-7654
                https://orcid.org/0000-0001-5879-3275
                https://orcid.org/0000-0003-4152-4081
                https://orcid.org/0000-0001-7265-2575
                https://orcid.org/0000-0002-2596-2906
                Article
                abd0831
                10.1126/science.abd0831
                7299283
                32540904
                626472c0-3e96-4052-8bc4-7e99a8a6bf5b
                Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

                This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

                History
                : 30 May 2020
                : 11 June 2020
                Funding
                Funded by: doi http://dx.doi.org/10.13039/100012399, Biomedical Advanced Research and Development Authority;
                Award ID: HHSO100201700020C
                Categories
                Report
                Reports
                Reports
                Virology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article