7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ve stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ve cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a critical function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ve cells and suggest that persistent proliferative capacity of Sox2+ve cells may underlie the pathogenesis of PCP.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the deubiquitinase gene USP8 cause Cushing's disease.

          Cushing's disease is caused by corticotroph adenomas of the pituitary. To explore the molecular mechanisms of endocrine autonomy in these tumors, we performed exome sequencing of 10 corticotroph adenomas. We found somatic mutations in the USP8 deubiquitinase gene in 4 of 10 adenomas. The mutations clustered in the 14-3-3 protein binding motif and enhanced the proteolytic cleavage and catalytic activity of USP8. Cleavage of USP8 led to increased deubiqutination of the EGF receptor, impairing its downregulation and sustaining EGF signaling. USP8 mutants enhanced promoter activity of the gene encoding proopiomelanocortin. In summary, our data show that dominant mutations in USP8 cause Cushing's disease via activation of EGF receptor signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic regulation of pituitary gland development in human and mouse.

            Normal hypothalamopituitary development is closely related to that of the forebrain and is dependent upon a complex genetic cascade of transcription factors and signaling molecules that may be either intrinsic or extrinsic to the developing Rathke's pouch. These factors dictate organ commitment, cell differentiation, and cell proliferation within the anterior pituitary. Abnormalities in these processes are associated with congenital hypopituitarism, a spectrum of disorders that includes syndromic disorders such as septo-optic dysplasia, combined pituitary hormone deficiencies, and isolated hormone deficiencies, of which the commonest is GH deficiency. The highly variable clinical phenotypes can now in part be explained due to research performed over the last 20 yr, based mainly on naturally occurring and transgenic animal models. Mutations in genes encoding both signaling molecules and transcription factors have been implicated in the etiology of hypopituitarism, with or without other syndromic features, in mice and humans. To date, mutations in known genes account for a small proportion of cases of hypopituitarism in humans. However, these mutations have led to a greater understanding of the genetic interactions that lead to normal pituitary development. This review attempts to describe the complexity of pituitary development in the rodent, with particular emphasis on those factors that, when mutated, are associated with hypopituitarism in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects.

              Activating mutations in the ras oncogene are not considered sufficient to induce abnormal cellular proliferation in the absence of cooperating oncogenes. We demonstrate that the conditional expression of an endogenous K-ras(G12D) allele in murine embryonic fibroblasts causes enhanced proliferation and partial transformation in the absence of further genetic abnormalities. Interestingly, K-ras(G12D)-expressing fibroblasts demonstrate attenuation and altered regulation of canonical Ras effector signaling pathways. Widespread expression of endogenous K-ras(G12D) is not tolerated during embryonic development, and directed expression in the lung and GI tract induces preneoplastic epithelial hyperplasias. Our results suggest that endogenous oncogenic ras is sufficient to initiate transformation by stimulating proliferation, while further genetic lesions may be necessary for progression to frank malignancy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Development
                Development
                The Company of Biologists
                0950-1991
                1477-9129
                June 20 2017
                June 15 2017
                June 15 2017
                May 15 2017
                : 144
                : 12
                : 2141-2152
                Article
                10.1242/dev.150490
                5482995
                28506993
                © 2017

                Comments

                Comment on this article