3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Enhanced solid-state multispin metrology using dynamical decoupling

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          Modified Spin-Echo Method for Measuring Nuclear Relaxation Times

            • Record: found
            • Abstract: found
            • Article: not found

            Universal dynamical decoupling of a single solid-state spin from a spin bath.

            Controlling the interaction of a single quantum system with its environment is a fundamental challenge in quantum science and technology. We strongly suppressed the coupling of a single spin in diamond with the surrounding spin bath by using double-axis dynamical decoupling. The coherence was preserved for arbitrary quantum states, as verified by quantum process tomography. The resulting coherence time enhancement followed a general scaling with the number of decoupling pulses. No limit was observed for the decoupling action up to 136 pulses, for which the coherence time was enhanced more than 25 times compared to that obtained with spin echo. These results uncover a new regime for experimental quantum science and allow us to overcome a major hurdle for implementing quantum information protocols.
              • Record: found
              • Abstract: found
              • Article: not found

              A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres

              The nitrogen-vacancy defect centre in diamond has potential applications in nanoscale electric and magnetic-field sensing, single-photon microscopy, quantum information processing and bioimaging. These applications rely on the ability to position a single nitrogen-vacancy centre within a few nanometres of a sample, and then scan it across the sample surface, while preserving the centre's spin coherence and readout fidelity. However, existing scanning techniques, which use a single diamond nanocrystal grafted onto the tip of a scanning probe microscope, suffer from short spin coherence times due to poor crystal quality, and from inefficient far-field collection of the fluorescence from the nitrogen-vacancy centre. Here, we demonstrate a robust method for scanning a single nitrogen-vacancy centre within tens of nanometres from a sample surface that addresses both of these concerns. This is achieved by positioning a single nitrogen-vacancy centre at the end of a high-purity diamond nanopillar, which we use as the tip of an atomic force microscope. Our approach ensures long nitrogen-vacancy spin coherence times (∼75 µs), enhanced nitrogen-vacancy collection efficiencies due to waveguiding, and mechanical robustness of the device (several weeks of scanning time). We are able to image magnetic domains with widths of 25 nm, and demonstrate a magnetic field sensitivity of 56 nT Hz(-1/2) at a frequency of 33 kHz, which is unprecedented for scanning nitrogen-vacancy centres.

                Author and article information

                Journal
                PRBMDO
                Physical Review B
                Phys. Rev. B
                American Physical Society (APS)
                1098-0121
                1550-235X
                July 2012
                July 24 2012
                : 86
                : 4
                Article
                10.1103/PhysRevB.86.045214
                62670283-bcea-45f0-b7d1-2758722819e7
                © 2012

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article

                Related Documents Log