12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seasonal dynamics of Phlebotomus neglectus (Diptera: Psychodidae) in cave microhabitats in Romania and the rediscovery of Sergentomyia minuta (Rondani, 1843) after 50 years

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In a countrywide study aiming to update the knowledge on diversity of sand fly species in Romania, a sand fly population was observed in an isolated system of cave microhabitats. The caves are located in the protected area of Canaraua Fetii, Dobrogea region, southeastern Romania. The highest sand fly diversity was recorded in this area between 1968 and 1970. This work presents a study conducted to estimate the seasonal variation of the sand fly species in correlation with the particular environmental factors of the isolated system of cave microhabitats.

          Methods

          Sand flies were collected between May and October 2020 from one trapping site of interest in Canaraua Fetii. The trapping site consisted of a cave entrance. CDC miniature light traps and sticky traps were used to collect insects from the exterior walls of the cave entrance. Species identification of collected sand flies was done using morphological keys. Statistical analysis of the trapping and climatic data was performed.

          Results

          From all collected sand flies, 99.7% (818/822) were Phlebotomus neglectus, 0.1% (1/822) Ph. balcanicus and 0.2% (2/822) Sergentomyia minuta. Sand fly activity was first observed on 2 July and last on 24 September. A monomodal abundance trend was present, with the peak activity between 16 and 17 July. The analysis of the climatic data showed correlations between the total number of captured sand flies and both average temperature and average relative humidity. The total number of collected specimens was statistically higher when CDC miniature light traps were used compared to sticky traps. The number of females on the sticky traps was significantly higher than the number of males on the same trap type. Compared with the sticky traps, significantly more males were collected by CDC miniature light traps. This is the first record of Se. minuta in Romania after 50 years of no records (despite the trapping effort of the last 5 years in the country). Also, Ph. sergenti, previously present in this location, was not found.

          Conclusions

          In the investigated natural habitat, the diversity of the sand fly species appears to have changed, with the predominance of Ph. neglectus instead of Ph. balcanicus and Se. minuta (recorded as the two predominant species in 1968–1970). A monomodal abundance trend was observed as in other regions of the country. The sand fly activity in this particular cave microhabitat appears to be longer than in other regions in Romania. Longer sand fly activity increases the zoonotic risk of various pathogenic species’ transmission, with an impact on public health, as sand flies are important insect vectors.

          Graphical abstract

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s13071-021-04985-y.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern.

          Phlebotomine sandflies transmit pathogens that affect humans and animals worldwide. We review the roles of phlebotomines in the spreading of leishmaniases, sandfly fever, summer meningitis, vesicular stomatitis, Chandipura virus encephalitis and Carrión's disease. Among over 800 species of sandfly recorded, 98 are proven or suspected vectors of human leishmaniases; these include 42 Phlebotomus species in the Old World and 56 Lutzomyia species in the New World (all: Diptera: Psychodidae). Based on incrimination criteria, we provide an updated list of proven or suspected vector species by endemic country where data are available. Increases in sandfly diffusion and density resulting from increases in breeding sites and blood sources, and the interruption of vector control activities contribute to the spreading of leishmaniasis in the settings of human migration, deforestation, urbanization and conflict. In addition, climatic changes can be expected to affect the density and dispersion of sandflies. Phlebovirus infections and diseases are present in large areas of the Old World, especially in the Mediterranean subregion, in which virus diversity has proven to be higher than initially suspected. Vesiculovirus diseases are important to livestock and humans in the southeastern U.S.A. and Latin America, and represent emerging human threats in parts of India. Carrión's disease, formerly restricted to regions of elevated altitude in Peru, Ecuador and Colombia, has shown recent expansion to non-endemic areas of the Amazon basin. © 2012 The Authors. Medical and Veterinary Entomology © 2012 The Royal Entomological Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Seasonal Dynamics of Phlebotomine Sand Fly Species Proven Vectors of Mediterranean Leishmaniasis Caused by Leishmania infantum

            Background The recent geographical expansion of phlebotomine vectors of Leishmania infantum in the Mediterranean subregion has been attributed to ongoing climate changes. At these latitudes, the activity of sand flies is typically seasonal; because seasonal phenomena are also sensitive to general variations in climate, current phenological data sets can provide a baseline for continuing investigations on sand fly population dynamics that may impact on future scenarios of leishmaniasis transmission. With this aim, in 2011–2013 a consortium of partners from eight Mediterranean countries carried out entomological investigations in sites where L. infantum transmission was recently reported. Methods/Principal Findings A common protocol for sand fly collection included monthly captures by CDC light traps, complemented by sticky traps in most of the sites. Collections were replicated for more than one season in order to reduce the effects of local weather events. In each site, the trapping effort was left unchanged throughout the survey to legitimate inter-seasonal comparisons. Data from 99,000 collected specimens were analyzed, resulting in the description of seasonal dynamics of 56,000 sand flies belonging to L. infantum vector species throughout a wide geographical area, namely P. perniciosus (Portugal, Spain and Italy), P. ariasi (France), P. neglectus (Greece), P. tobbi (Cyprus and Turkey), P. balcanicus and P. kandelakii (Georgia). Time of sand fly appearance/disappearance in collections differed between sites, and seasonal densities showed variations in each site. Significant correlations were found between latitude/mean annual temperature of sites and i) the first month of sand fly appearance, that ranged from early April to the first half of June; ii) the type of density trend, varying from a single peak in July/August to multiple peaks increasing in magnitude from May through September. A 3-modal trend, recorded for P. tobbi in Cyprus, represents a novel finding for a L. infantum vector. Adults ended the activity starting from mid September through November, without significant correlation with latitude/mean annual temperature of sites. The period of potential exposure to L.infantum in the Mediterranean subregion, as inferred by adult densities calculated from 3 years, 37 sites and 6 competent vector species, was associated to a regular bell-shaped density curve having a wide peak center encompassing the July-September period, and falling between early May to late October for more than 99% of values. Apparently no risk for leishmaniasis transmission took place from December through March in the years considered. We found a common pattern of nocturnal females activity, whose density peaked between 11 pm and 2 am. Conclusions Despite annual variations, multiple collections performed over consecutive years provided homogeneous patterns of the potential behavior of leishmaniasis vectors in selected sites, which we propose may represent sentinel areas for future monitoring. In the investigated years, higher potential risk for L. infantum transmission in the Mediterranean was identified in the June-October period (97% relative vector density), however such risk was not equally distributed throughout the region, since density waves of adults occurred earlier and were more frequent in southern territories.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The biology and control of Phlebotomine sand flies

                Bookmark

                Author and article information

                Contributors
                cristina.cazan@usamvcluj.ro
                cintia.horvath@usamvcluj.ro
                luciana.rus@usamvcluj.ro
                daniela.porea@ddni.ro
                mihai.marinov@ddni.ro
                vasile.alexe@ddni.ro
                amihalca@usamvcluj.ro
                Journal
                Parasit Vectors
                Parasit Vectors
                Parasites & Vectors
                BioMed Central (London )
                1756-3305
                15 September 2021
                15 September 2021
                2021
                : 14
                : 476
                Affiliations
                [1 ]GRID grid.413013.4, ISNI 0000 0001 1012 5390, Molecular Biology and Veterinary Parasitology Unit, Faculty of Veterinary Medicine, , University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, CDS-9, ; Cluj-Napoca, Romania
                [2 ]GRID grid.413013.4, ISNI 0000 0001 1012 5390, Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, , University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, ; Cluj-Napoca, Romania
                [3 ]GRID grid.426852.f, ISNI 0000 0004 0481 1740, Danube Delta National Institute for Research and Development, ; Tulcea, Romania
                Author information
                http://orcid.org/0000-0002-7058-3059
                Article
                4985
                10.1186/s13071-021-04985-y
                8442371
                62688a86-dcfa-42a1-9ec1-e20148222931
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 June 2021
                : 28 August 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100006595, unitatea executiva pentru finantarea invatamantului superior, a cercetarii, dezvoltarii si inovarii;
                Award ID: 57 PCCDI/2018
                Award ID: PN-III-P1-1.1-PD-2019-0598
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                Parasitology
                sand flies,phlebotomus balcanicus,phlebotomus neglectus,periodicity,abundance,romania
                Parasitology
                sand flies, phlebotomus balcanicus, phlebotomus neglectus, periodicity, abundance, romania

                Comments

                Comment on this article