3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Heterogeneous Ensemble Learning Model Based on Data Distribution for Credit Card Fraud Detection

      1 , 1 , 1 , 1
      Wireless Communications and Mobile Computing
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Credit card fraud detection (CCFD) is important for protecting the cardholder’s property and the reputation of banks. Class imbalance in credit card transaction data is a primary factor affecting the classification performance of current detection models. However, prior approaches are aimed at improving the prediction accuracy of the minority class samples (fraudulent transactions), but this usually leads to a significant drop in the model’s predictive performance for the majority class samples (legal transactions), which greatly increases the investigation cost for banks. In this paper, we propose a heterogeneous ensemble learning model based on data distribution (HELMDD) to deal with imbalanced data in CCFD. We validate the effectiveness of HELMDD on two real credit card datasets. The experimental results demonstrate that compared with current state-of-the-art models, HELMDD has the best comprehensive performance. HELMDD not only achieves good recall rates for both the minority class and the majority class but also increases the savings rate for banks to 0.8623 and 0.6696, respectively.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Data mining for credit card fraud: A comparative study

                Bookmark

                Author and article information

                Contributors
                Journal
                Wireless Communications and Mobile Computing
                Wireless Communications and Mobile Computing
                Hindawi Limited
                1530-8677
                1530-8669
                July 21 2021
                July 21 2021
                : 2021
                : 1-13
                Affiliations
                [1 ]College of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
                Article
                10.1155/2021/2531210
                6275d20b-42d0-403d-bbe5-3e4382e93406
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article