11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Resistance of endothelial cells to anoxia-reoxygenation in isolated guinea pig hearts.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The release of cytosolic enzymes from myocardial and endothelial cells in the anoxic-reoxygenated guinea pig heart was investigated. Isolated hearts were perfused with Tyrode solution in the Langendorff mode. Sixty-minute anoxic perfusion with or without glucose (5 mM) was followed by 15-min normoxic perfusion with glucose. The losses of purine-nucleoside phosphorylase (PNP) from endothelial cells and of lactate dehydrogenase (LDH) and creatine kinase (CK) from the mass of myocardial cells were determined. After 30-min anoxia, the release of LDH and CK but not of PNP increased. Reoxygenation after 60-min anoxia with glucose caused a partial recovery of tissue ATP but also an increase in leakage of LDH (11% of total in 15 min) and CK (10%) and a sudden rise in coronary resistance, indicating contracture development ("oxygen paradox"). PNP release remained low (0.5%). In hearts subjected to glucose-free anoxia, ATP levels did not rise during 15-min reoxygenation, contracture development was delayed, and the release of LDH and CK was diminished (3.1 and 2.7%, respectively). Leakage of PNP was again low (0.5%). The results indicate that cardiomyocytes are more severely injured by anoxia-reoxygenation than the coronary endothelium. The rapidly developing reoxygenation-induced injury of cardiomyocytes seems to be an energy-dependent phenomenon, since it was attenuated in hearts deprived of substrate in anoxia.

          Related collections

          Author and article information

          Journal
          Am. J. Physiol.
          The American journal of physiology
          American Physiological Society
          0002-9513
          0002-9513
          Aug 1989
          : 257
          : 2 Pt 2
          Affiliations
          [1 ] Physiologisches Institut I, Universität Düsseldorf, Federal Republic of Germany.
          Article
          10.1152/ajpheart.1989.257.2.H488
          2504059
          6282598c-21fe-4a21-918d-79b018407964
          History

          Comments

          Comment on this article