7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Naphthalene and β-naphthoflavone effects on Anguilla anguilla L. hepatic metabolism and erythrocytic nuclear abnormalities

      ,
      Environment International
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of a polycyclic aromatic hydrocarbon (PAH) such as naphthalene (NAP)--an environmental contaminant--and beta-naphthoflavone (BNF)--a model substance (PAH-like compound)--were investigated in European eel (Anguilla anguilla L.) over 3-, 6-, and 9-day exposure (0.1-2.7 microM). Both xenobiotics revealed to be strong biotransformation (phase I) inducers. After 3-day exposure, liver ethoxyresorufin O-deethylase (EROD) activity was significantly increased by all NAP and BNF tested concentrations. At 6 and 9 days, liver EROD activity was significantly induced mainly by the highest NAP and BNF concentrations. Liver cytochrome P450 content was significantly induced after 3-day exposure to 0.9 and 2.7 microM BNF and 9-day exposure to 0.1, 0.3 and 0.9 microM NAP. Liver alanine transaminase (ALT) activity was measured as an indicator of hepatic health condition, revealing a significant decrease after 6-day exposure to 0.9 microM BNF. Genotoxicity measured as erythrocytic nuclear abnormalities (ENA) was detected in all BNF treated fish on day 6, whereas on day 9, ENA frequencies returned to control levels, significantly decreasing at 0.9 microM BNF exposure. Immature erythrocytes (IE) frequency demonstrated a decreasing tendency along the BNF experiment and concomitantly with the above ENA response. The present experimental results elect EROD activity in A. anguilla as a useful short- to medium-term biomarker of exposure to both PAH and PAH-like compounds. However, some problems can emerge in the presence of high xenobiotic concentrations. Concerning genotoxicity, it is hypothesized that ENA response depends on different factors such as the exhaustion of the detoxification process, the balance erythropoiesis/erythrocytic catabolism and the DNA repairing capacity.

          Related collections

          Author and article information

          Journal
          Environment International
          Environment International
          Elsevier BV
          01604120
          September 2002
          September 2002
          : 28
          : 4
          : 285-293
          Article
          10.1016/S0160-4120(02)00037-5
          12220115
          629fe449-5540-41eb-a903-f6fbce83ebc6
          © 2002

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article