11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Facing acid–base disorders in the third millennium – the Stewart approach revisited

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acid–base disorders are common in the critically ill. Most of these disorders do not cause harm and are self-limiting after appropriate resuscitation and management. Unfortunately, clinicians tend to think about an acid–base disturbance as a “disease” and spend long hours effectively treating numbers rather than the patient. Moreover, a sizable number of intensive-care physicians experience difficulties in interpreting the significance of or understanding the etiology of certain forms of acid–base disequilibria. Traditional tools for interpreting acid–base disorders may not be adequate for analyzing the complex nature of these metabolic abnormalities. Inappropriate interpretation may also lead to wrong clinical conclusions and incorrectly influence clinical management (eg, bicarbonate therapy for metabolic acidosis in different clinical situations). The Stewart approach, based on physicochemical principles, is a robust physiological concept that can facilitate the interpretation and analysis of simple, mixed, and complex acid–base disorders, thereby allowing better diagnosis of the cause of the disturbance and more timely treatment. However, as the concept does not attach importance to plasma bicarbonate, clinicians may find it complicated to use in their daily clinical practice. This article reviews various approaches to interpreting acid–base disorders and suggests the integration of base-excess and Stewart approach for a better interpretation of these metabolic disorders.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A simplified strong ion model for acid-base equilibria: application to horse plasma.

          The Henderson-Hasselbalch equation and Stewart's strong ion model are currently used to describe mammalian acid-base equilibria. Anomalies exist when the Henderson-Hasselbalch equation is applied to plasma, whereas the strong ion model does not provide a practical method for determining the total plasma concentration of nonvolatile weak acids ([Atot]) and the effective dissociation constant for plasma weak acids (Ka). A simplified strong ion model, which was developed from the assumption that plasma ions act as strong ions, volatile buffer ions (HCO-3), or nonvolatile buffer ions, indicates that plasma pH is determined by five independent variables: PCO2, strong ion difference, concentration of individual nonvolatile plasma buffers (albumin, globulin, and phosphate), ionic strength, and temperature. The simplified strong ion model conveys on a fundamental level the mechanism for change in acid-base status, explains many of the anomalies when the Henderson-Hasselbalch equation is applied to plasma, is conceptually and algebraically simpler than Stewart's strong ion model, and provides a practical in vitro method for determining [Atot] and Ka of plasma. Application of the simplified strong ion model to CO2-tonometered horse plasma produced values for [Atot] (15.0 +/- 3.1 meq/l) and Ka (2.22 +/- 0.32 x 10(-7) eq/l) that were significantly different from the values commonly assumed for human plasma ([Atot] = 20.0 meq/l, Ka = 3.0 x 10(-7) eq/l). Moreover, application of the experimentally determined values for [Atot] and Ka to published data for the horse (known PCO2, strong ion difference, and plasma protein concentration) predicted plasma pH more accurately than the values for [Atot] and Ka commonly assumed for human plasma. Species-specific values for [Atot] and Ka should be experimentally determined when the simplified strong ion model (or strong ion model) is used to describe acid-base equilibria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical review: Reunification of acid–base physiology

            Recent advances in acid–base physiology and in the epidemiology of acid–base disorders have refined our understanding of the basic control mechanisms that determine blood pH in health and disease. These refinements have also brought parity between the newer, quantitative and older, descriptive approaches to acid–base physiology. This review explores how the new and older approaches to acid–base physiology can be reconciled and combined to result in a powerful bedside tool. A case based tutorial is also provided.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches.

              When approaching the analysis of disorders of acid-base balance, physical chemists, physiologists, and clinicians, tend to focus on different aspects of the relevant phenomenology. The physical chemist focuses on a quantitative understanding of proton hydration and aqueous proton transfer reactions that alter the acidity of a given solution. The physiologist focuses on molecular, cellular, and whole organ transport processes that modulate the acidity of a given body fluid compartment. The clinician emphasizes the diagnosis, clinical causes, and most appropriate treatment of acid-base disturbances. Historically, two different conceptual frameworks have evolved among clinicians and physiologists for interpreting acid-base phenomena. The traditional or bicarbonate-centered framework relies quantitatively on the Henderson-Hasselbalch equation, whereas the Stewart or strong ion approach utilizes either the original Stewart equation or its simplified version derived by Constable. In this review, the concepts underlying the bicarbonate-centered and Stewart formulations are analyzed in detail, emphasizing the differences in how each approach characterizes acid-base phenomenology at the molecular level, tissue level, and in the clinical realm. A quantitative comparison of the equations that are currently used in the literature to calculate H(+) concentration ([H(+)]) is included to clear up some of the misconceptions that currently exist in this area. Our analysis demonstrates that while the principle of electroneutrality plays a central role in the strong ion formulation, electroneutrality mechanistically does not dictate a specific [H(+)], and the strong ion and bicarbonate-centered approaches are quantitatively identical even in the presence of nonbicarbonate buffers. Finally, our analysis indicates that the bicarbonate-centered approach utilizing the Henderson-Hasselbalch equation is a mechanistic formulation that reflects the underlying acid-base phenomenology.
                Bookmark

                Author and article information

                Journal
                Int J Nephrol Renovasc Dis
                Int J Nephrol Renovasc Dis
                International Journal of Nephrology and Renovascular Disease
                Dove Medical Press
                1178-7058
                2014
                04 June 2014
                : 7
                : 209-217
                Affiliations
                [1 ]Intensive Care Unit, Salford Royal Hospitals NHS Trust, Salford, Manchester, UK (formerly)
                [2 ]Translational Medicine and Neurosciences, University of Manchester, Manchester, UK
                [3 ]Intensive Care Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
                [4 ]Haut Leveque University Hospital of Bordeaux, University of Bordeaux 2, Pessac, France
                [5 ]Intensive Care Department, East Limburg Hospital, Genk, Belgium
                Author notes
                Correspondence: Patrick M Honoré, Intensive Care Department, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB University), 1090 Brussels, Belgium, Tel +32 2 474 9097, Fax +32 2 477 5107, Email patrick.honore@ 123456az.vub.ac.be
                Article
                ijnrd-7-209
                10.2147/IJNRD.S62126
                4060884
                24959091
                62a1ed36-9b76-4a31-aa7b-ba22338c8ef9
                © 2014 Kishen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Nephrology
                hemofiltration,strong ion difference,strong ion gap,dialysis,crrt,sepsis,bedside acid–base approach,stewart acid base approach

                Comments

                Comment on this article