14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The blood–brain barrier (BBB) plays a fundamental role in protecting and maintaining the homeostasis of the brain. For this reason, drug delivery to the brain is much more difficult than that to other compartments of the body. In order to bypass or cross the BBB, many strategies have been developed: invasive techniques, such as temporary disruption of the BBB or direct intraventricular and intracerebral administration of the drug, as well as noninvasive techniques. Preliminary results, reported in the large number of studies on the potential strategies for brain delivery, are encouraging, but it is far too early to draw any conclusion about the actual use of these therapeutic approaches. Among the most recent, but still pioneering, approaches related to the nasal mucosa properties, the permeabilization of the BBB via nasal mucosal engrafting can offer new potential opportunities. It should be emphasized that this surgical procedure is quite invasive, but the implication for patient outcome needs to be compared to the gold standard of direct intracranial injection, and evaluated whilst keeping in mind that central nervous system diseases and lysosomal storage diseases are chronic and severely debilitating and that up to now no therapy seems to be completely successful.

          Related collections

          Most cited references 80

          • Record: found
          • Abstract: found
          • Article: not found

          Intranasal delivery of biologics to the central nervous system.

          Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS. Copyright © 2011 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Convection-enhanced delivery of macromolecules in the brain.

            For many compounds (neurotrophic factors, antibodies, growth factors, genetic vectors, enzymes) slow diffusion in the brain severely limits drug distribution and effect after direct drug administration into brain parenchyma. We investigated convection as a means to enhance the distribution of the large and small molecules 111In-labeled transferrin (111In-Tf; M(r), 80,000) and [14C]sucrose (M(r), 359) over centimeter distances by maintaining a pressure gradient during interstitial infusion into white matter to generate bulk flow through the brain interstitium. The volume of distribution (Vd) containing > or = 1% concentration of infusion solution increased linearly with the infusion volume (Vi) for 111In-Tf(Vd/Vi, 6:1) and [14C]sucrose (Vd/Vi, 13:1). Twenty-four hours after infusion, the distribution of 111In-Tf was increased and more homogeneous, and penetration into gray matter had occurred. By using convection to supplement simple diffusion, enhanced distribution of large and small molecules can be obtained in the brain while achieving drug concentrations orders of magnitude greater than systemic levels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterogeneity of CNS myeloid cells and their roles in neurodegeneration.

              The diseased brain hosts a heterogeneous population of myeloid cells, including parenchymal microglia, perivascular cells, meningeal macrophages and blood-borne monocytes. To date, the different types of brain myeloid cells have been discriminated solely on the basis of their localization, morphology and surface epitope expression. However, recent data suggest that resident microglia may be functionally distinct from bone marrow- or blood-derived phagocytes, which invade the CNS under pathological conditions. During the last few years, research on brain myeloid cells has been markedly changed by the advent of new tools in imaging, genetics and immunology. These methodologies have yielded unexpected results, which challenge the traditional view of brain macrophages. On the basis of these new studies, we differentiate brain myeloid subtypes with regard to their origin, function and fate in the brain and illustrate the divergent features of these cells during neurodegeneration. © 2011 Nature America, Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2017
                27 January 2017
                : 11
                : 325-335
                Affiliations
                [1 ]Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Rome, Italy
                [2 ]Center for Life Nano Science@ Sapienza, Fondazione Istituto Italiano di Tecnologia, Rome, Italy
                [3 ]Department of Pharmacy, University “G. d’Annunzio”, Chieti, Italy
                [4 ]IRC FSH-Interregional Research Center for Food Safety & Health, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
                [5 ]Department of Health Sciences, Campus Universitario “S. Venuta”, University of Catanzaro “Magna Græcia”, Catanzaro, Italy
                Author notes
                Correspondence: Maria Carafa, Department of Drug Chemistry and Technology, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy, Tel +39 06 4991 3603, Fax +39 06 4991 3133, Email maria.carafa@ 123456uniroma1.it
                Article
                dddt-11-325
                10.2147/DDDT.S100075
                5291459
                © 2017 Marianecci et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Comments

                Comment on this article