0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Rifaximin on Luminal and Wall-Adhered Gut Commensal Microbiota in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rifaximin is a broad-spectrum antibiotic that ameliorates symptomatology in inflammatory/functional gastrointestinal disorders. We assessed changes in gut commensal microbiota (GCM) and Toll-like receptors (TLRs) associated to rifaximin treatment in mice. Adult C57BL/6NCrl mice were treated (7/14 days) with rifaximin (50/150 mg/mouse/day, PO). Luminal and wall-adhered ceco-colonic GCM were characterized by fluorescent in situ hybridization (FISH) and microbial profiles determined by terminal restriction fragment length polymorphism (T-RFLP). Colonic expression of TLR2/3/4/5/7 and immune-related markers was assessed (RT-qPCR). Regardless the period of treatment or the dose, rifaximin did not alter total bacterial counts or bacterial biodiversity. Only a modest increase in Bacteroides spp. (150 mg/1-week treatment) was detected. In control conditions, only Clostridium spp. and Bifidobacterium spp. were found attached to the colonic epithelium. Rifaximin showed a tendency to favour their adherence after a 1-week, but not 2-week, treatment period. Minor up-regulation in TLRs expression was observed. Only the 50 mg dose for 1-week led to a significant increase (by 3-fold) in TLR-4 expression. No changes in the expression of immune-related markers were observed. Rifaximin, although its antibacterial properties, induces minor changes in luminal and wall-adhered GCM in healthy mice. Moreover, no modulation of TLRs or local immune systems was observed. These findings, in normal conditions, do not rule out a modulatory role of rifaximin in inflammatory and or dysbiotic states of the gut.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gut microbiota and IBD: causation or correlation?

            A general consensus exists that IBD is associated with compositional and metabolic changes in the intestinal microbiota (dysbiosis). However, a direct causal relationship between dysbiosis and IBD has not been definitively established in humans. Findings from animal models have revealed diverse and context-specific roles of the gut microbiota in health and disease, ranging from protective to pro-inflammatory actions. Moreover, evidence from these experimental models suggest that although gut bacteria often drive immune activation, chronic inflammation in turn shapes the gut microbiota and contributes to dysbiosis. The purpose of this Review is to summarize current associations between IBD and dysbiosis, describe the role of the gut microbiota in the context of specific animal models of colitis, and discuss the potential role of microbiota-focused interventions in the treatment of human IBD. Ultimately, more studies will be needed to define host–microbial relationships relevant to human disease and amenable to therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dysbiosis of the gut microbiota in disease

              There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                06 January 2021
                January 2021
                : 22
                : 2
                : 500
                Affiliations
                [1 ]Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; marinaferrerclotas@ 123456gmail.com (M.F.); monica.aguilerap@ 123456gmail.com (M.A.)
                [2 ]Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
                [3 ]Centro de Investigación Biomédicaen Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
                Author notes
                [* ]Correspondence: vicente.martinez@ 123456uab.es ; Tel.: +34-093-581-3834
                Author information
                https://orcid.org/0000-0003-4293-7558
                https://orcid.org/0000-0003-0763-7947
                https://orcid.org/0000-0001-5193-715X
                Article
                ijms-22-00500
                10.3390/ijms22020500
                7825446
                33419066
                62b75db2-2e8f-43bb-b8b3-3d1c9ac6acf6
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 November 2020
                : 01 January 2021
                Categories
                Article

                Molecular biology
                dysbiosis,gut commensal microbiota,host-bacterial interaction systems,immune markers,rifaximin,toll-like receptors

                Comments

                Comment on this article