264
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The type II transmembrane serine proteases TMPRSS2 and HAT activate influenza viruses and the SARS-coronavirus (TMPRSS2) in cell culture and may play an important role in viral spread and pathogenesis in the infected host. However, it is at present largely unclear to what extent these proteases are expressed in viral target cells in human tissues. Here, we show that both HAT and TMPRSS2 are coexpressed with 2,6-linked sialic acids, the major receptor determinant of human influenza viruses, throughout the human respiratory tract. Similarly, coexpression of ACE2, the SARS-coronavirus receptor, and TMPRSS2 was frequently found in the upper and lower aerodigestive tract, with the exception of the vocal folds, epiglottis and trachea. Finally, activation of influenza virus was conserved between human, avian and porcine TMPRSS2, suggesting that this protease might activate influenza virus in reservoir-, intermediate- and human hosts. In sum, our results show that TMPRSS2 and HAT are expressed by important influenza and SARS-coronavirus target cells and could thus support viral spread in the human host.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.

          Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion.
            • Record: found
            • Abstract: found
            • Article: not found

            Emergence and pandemic potential of swine-origin H1N1 influenza virus.

            Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.
              • Record: found
              • Abstract: found
              • Article: not found

              Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals.

              Viral attachment to the host cell is critical for tissue and species specificity of virus infections. Recently, pattern of viral attachment (PVA) in human respiratory tract was determined for highly pathogenic avian influenza virus of subtype H5N1. However, PVA of human influenza viruses and other avian influenza viruses in either humans or experimental animals is unknown. Therefore, we compared PVA of two human influenza viruses (H1N1 and H3N2) and two low pathogenic avian influenza viruses (H5N9 and H6N1) with that of H5N1 virus in respiratory tract tissues of humans, mice, ferrets, cynomolgus macaques, cats, and pigs by virus histochemistry. We found that human influenza viruses attached more strongly to human trachea and bronchi than H5N1 virus and attached to different cell types than H5N1 virus. These differences correspond to primary diagnoses of tracheobronchitis for human influenza viruses and diffuse alveolar damage for H5N1 virus. The PVA of low pathogenic avian influenza viruses in human respiratory tract resembled that of H5N1 virus, demonstrating that other properties determine its pathogenicity for humans. The PVA in human respiratory tract most closely mirrored that in ferrets and pigs for human influenza viruses and that in ferrets, pigs, and cats for avian influenza viruses.

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 April 2012
                : 7
                : 4
                : e35876
                Affiliations
                [1 ]German Primate Center, Göttingen, Germany
                [2 ]Oxfabs, Nuffield Department of Clinical Laboratory Sciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
                [3 ]Institute of Virology, Hannover Medical School, Hannover, Germany
                [4 ]Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
                [5 ]Department of Cellular Pathology and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
                Kantonal Hospital St. Gallen, Switzerland
                Author notes

                Conceived and designed the experiments: EJS SP. Performed the experiments: HL SB AH SG PP. Analyzed the data: EJS SP. Contributed reagents/materials/analysis tools: JL PSN SB AH SD PP. Wrote the paper: EJS SP.

                Article
                PONE-D-11-23832
                10.1371/journal.pone.0035876
                3340400
                22558251
                62b77ca9-2441-460f-9c55-d294842ebae0
                Bertram et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 November 2011
                : 23 March 2012
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biochemistry
                Enzymes
                Glycobiology
                Immunochemistry
                Proteins
                Histology
                Microbiology
                Virology
                Viral Transmission and Infection
                Coreceptors
                Host Cells
                Viral Attachment
                Viral Entry
                Emerging Viral Diseases
                Applied Microbiology
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Medical Microbiology
                Microbial Control
                Microbial Growth and Development
                Microbial Pathogens
                Pathogenesis
                Medicine
                Clinical Research Design
                Observational Studies
                Infectious Diseases
                Viral Diseases
                Influenza
                SARS
                Zoonoses
                Avian influenza A viruses

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log