404
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Drugs dedicated to alleviate neurodegenerative diseases like Parkinson’s and Alzheimer’s have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal.

          Methods

          The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom’s aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out.

          Results

          The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too.

          Conclusions

          P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be developed as a nutraceutical for the mitigation of neurodegenerative diseases.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: not found
          • Article: not found

          An essay on the shaking palsy. 1817.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemical composition and nutritional value of European species of wild growing mushrooms: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory.

              J. Sweatt (2000)
              The mitogen-activated protein kinase (MAP kinase, MAPK) cascade, as the name implies, was originally discovered as a critical regulator of cell division and differentiation. As further details of this signaling cascade were worked out, it became clear that the MAPK cascade is in fact a prototype for a family of signaling cascades that share the motif of three serially linked kinases regulating each other by sequential phosphorylation. Thus, a revised nomenclature arose that uses the term MAPK to refer to the entire superfamily of signaling cascades (comprising the erks, the JNKs and the p38 stress activated protein kinases), and specifies the prototype MAPK as the extracellular signal-regulated kinase (erk). The two erk MAPK isoforms, p44 MAPK and p42 MAPK, are referred to as erk1 and erk2, respectively. The erks are abundantly expressed in neurons in the mature central nervous system, raising the question of why the prototype molecular regulators of cell division and differentiation are present in these non-dividing, terminally differentiated neurons. This review will describe the beginnings of an answer to this question. Interestingly, the general model has begun to emerge that the erk signaling system has been co-opted in mature neurons to function in synaptic plasticity and memory. Moreover, recent insights have led to the intriguing prospect that these molecules serve as biochemical signal integrators and molecular coincidence detectors for coordinating responses to extracellular signals in neurons. In this review I will first outline the essential components of this signal transduction cascade, and briefly describe recent results implicating the erks in mammalian synaptic plasticity and learning. I will then proceed to outline recent results implicating the erks as molecular signal integrators and, potentially, coincidence detectors. Finally, I will speculate on what the critical downstream effectors of the erks are in neurons, and how they might provide a readout of the integrated signal.
                Bookmark

                Author and article information

                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central
                1472-6882
                2012
                19 July 2012
                : 12
                : 102
                Affiliations
                [1 ]Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
                [2 ]Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
                [3 ]Department of Anatomy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
                Article
                1472-6882-12-102
                10.1186/1472-6882-12-102
                3416657
                22812497
                62b856f5-c4fa-4ca8-81e7-2243df8fc006
                Copyright ©2012 Phan et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 January 2012
                : 19 July 2012
                Categories
                Research Article

                Complementary & Alternative medicine
                neurite outgrowth,edible mushroom,neurodegenerative disease,pleurotus giganteus,pi3k/akt signalling pathway,mek/erk signalling pathway,medicinal mushroom

                Comments

                Comment on this article