8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cross-talk between IL-6 trans-signaling and AIM2 inflammasome/IL-1β axes bridge innate immunity and epithelial apoptosis to promote emphysema

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Significance

          Chronic lung inflammation triggered by dysregulated activation of innate immunity is implicated in pulmonary emphysema. However, key innate immune molecular regulators that trigger emphysema remain ill-defined. We reveal innate immune multiprotein inflammasome complexes comprising the AIM2 cytosolic DNA sensor as key drivers of pulmonary emphysema. The requirement for AIM2 was independent of inflammation but rather via a direct effect of the AIM2 inflammasome in augmenting alveolar epithelial apoptosis. Furthermore, we discover that AIM2 is upregulated in emphysema by cross-talk with the immunomodulatory cytokine interleukin 6. These findings lay the foundation for the future design and clinical application of novel innate immune-based therapeutics against emphysema.

          Abstract

          Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130 F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1β but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130 F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1β and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death.

          Inflammatory caspases (caspase-1, -4, -5 and -11) are critical for innate defences. Caspase-1 is activated by ligands of various canonical inflammasomes, and caspase-4, -5 and -11 directly recognize bacterial lipopolysaccharide, both of which trigger pyroptosis. Despite the crucial role in immunity and endotoxic shock, the mechanism for pyroptosis induction by inflammatory caspases is unknown. Here we identify gasdermin D (Gsdmd) by genome-wide clustered regularly interspaced palindromic repeat (CRISPR)-Cas9 nuclease screens of caspase-11- and caspase-1-mediated pyroptosis in mouse bone marrow macrophages. GSDMD-deficient cells resisted the induction of pyroptosis by cytosolic lipopolysaccharide and known canonical inflammasome ligands. Interleukin-1β release was also diminished in Gsdmd(-/-) cells, despite intact processing by caspase-1. Caspase-1 and caspase-4/5/11 specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyroptosis. The cleavage released the intramolecular inhibition on the gasdermin-N domain that showed intrinsic pyroptosis-inducing activity. Other gasdermin family members were not cleaved by inflammatory caspases but shared the autoinhibition; gain-of-function mutations in Gsdma3 that cause alopecia and skin defects disrupted the autoinhibition, allowing its gasdermin-N domain to trigger pyroptosis. These findings offer insight into inflammasome-mediated immunity/diseases and also change our understanding of pyroptosis and programmed necrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research

            In the last decade the number of bioscience journals has increased enormously, with many filling specialised niches reflecting new disciplines and technologies. The emergence of open-access journals has revolutionised the publication process, maximising the availability of research data. Nevertheless, a wealth of evidence shows that across many areas, the reporting of biomedical research is often inadequate, leading to the view that even if the science is sound, in many cases the publications themselves are not “fit for purpose,” meaning that incomplete reporting of relevant information effectively renders many publications of limited value as instruments to inform policy or clinical and scientific practice [1]–[21]. A recent review of clinical research showed that there is considerable cumulative waste of financial resources at all stages of the research process, including as a result of publications that are unusable due to poor reporting [22]. It is unlikely that this issue is confined to clinical research [2]–[14],[16]–[20]. Failure to describe research methods and to report results appropriately therefore has potential scientific, ethical, and economic implications for the entire research process and the reputation of those involved in it. This is particularly true for animal research, one of the most controversial areas of science. The largest and most comprehensive review of published animal research undertaken to date, to our knowledge, has highlighted serious omissions in the way research using animals is reported [5]. The survey, commissioned by the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), a UK Government-sponsored scientific organisation, found that only 59% of the 271 randomly chosen articles assessed stated the hypothesis or objective of the study, and the number and characteristics of the animals used (i.e., species/strain, sex, and age/weight). Most of the papers surveyed did not report using randomisation (87%) or blinding (86%) to reduce bias in animal selection and outcome assessment. Only 70% of the publications that used statistical methods fully described them and presented the results with a measure of precision or variability [5]. These findings are a cause for concern and are consistent with reviews of many research areas, including clinical studies, published in recent years [2]–[22]. Good Reporting Is Essential for Peer Review and to Inform Future Research Scrutiny by scientific peers has long been the mainstay of “quality control” for the publication process. The way that experiments are reported, in terms of the level of detail of methods and the presentation of key results, is crucial to the peer review process and, indeed, the subsequent utility and validity of the knowledge base that is used to inform future research. The onus is therefore on the research community to ensure that their research articles include all relevant information to allow in-depth critique, and to avoiding duplicating studies and performing redundant experiments. Ideally scientific publications should present sufficient information to allow a knowledgeable reader to understand what was done, why, and how, and to assess the biological relevance of the study and the reliability and validity of the findings. There should also be enough information to allow the experiment to be repeated [23]. The problem therefore is how to ensure that all relevant information is included in research publications. Using Reporting Guidelines Measurably Improves the Quality of Reporting Evidence provided by reviews of published research suggests that many researchers and peer reviewers would benefit from guidance about what information should be provided in a research article. The CONSORT Statement for randomised controlled clinical trials was one of the first guidelines developed in response to this need [24],[25]. Since publication, an increasing number of leading journals have supported CONSORT as part of their instructions to authors [26],[27]. As a result, convincing evidence is emerging that CONSORT improves the quality and transparency of reports of clinical trials [28],[29]. Following CONSORT, many other guidelines have been developed—there are currently more than 90 available for reporting different types of health research, most of which have been published in the last ten years (see http://www.equator-network.org and references [30],[31]). Guidelines have also been developed to improve the reporting of other specific bioscience research areas including metabolomics and gene expression studies [32]–[37]. Several organisations support the case for improved reporting and recommend the use of reporting guidelines, including the International Committee of Medical Journal Editors, the Council of Science Editors, the Committee on Publication Ethics, and the Nuffield Council for Bioethics [38]–[41]. Improving the Reporting of Animal Experiments—The ARRIVE Guidelines Most bioscience journals currently provide little or no guidance on what information to report when describing animal research [42]–[50]. Our review found that 4% of the 271 journal articles assessed did not report the number of animals used anywhere in the methods or the results sections [5]. Reporting animal numbers is essential so that the biological and statistical significance of the experimental results can be assessed or the data reanalysed, and is also necessary if the experimental methods are to be repeated. Improved reporting of these and other details will maximise the availability and utility of the information gained from every animal and every experiment, preventing unnecessary animal use in the future. To address this, we led an initiative to produce guidelines for reporting animal research. The guidelines, referred to as ARRIVE (Animals in Research: Reporting In Vivo Experiments), have been developed using the CONSORT Statement as their foundation [24],[25]. The ARRIVE guidelines consist of a checklist of 20 items describing the minimum information that all scientific publications reporting research using animals should include, such as the number and specific characteristics of animals used (including species, strain, sex, and genetic background); details of housing and husbandry; and the experimental, statistical, and analytical methods (including details of methods used to reduce bias such as randomisation and blinding). All the items in the checklist have been included to promote high-quality, comprehensive reporting to allow an accurate critical review of what was done and what was found. Consensus and consultation are the corner-stones of the guideline development process [51]. To maximise their utility, the ARRIVE guidelines have been prepared in consultation with scientists, statisticians, journal editors, and research funders. We convened an expert working group, comprising researchers and statisticians from a range of disciplines, and journal editors from Nature Cell Biology, Science, Laboratory Animals, and the British Journal of Pharmacology (see Acknowledgments). At a one-day meeting in June 2009, the working group agreed the scope and broad content of a draft set of guidelines that were then used as the basis for a wider consultation with the scientific community, involving researchers, and grant holders and representatives of the major bioscience funding bodies including the Medical Research Council, Wellcome Trust, Biotechnology and Biological Sciences Research Council, and The Royal Society (see Table 1). Feedback on the content and wording of the items was incorporated into the final version of the checklist. Further feedback on the content utility of the guidelines is encouraged and sought. 10.1371/journal.pbio.1000412.t001 Table 1 Funding bodies consulted. Name of Bioscience Research Funding Body Medical Research Council Biotechnology and Biological Sciences Research Council Wellcome Trust The Royal Society Association of Medical Research Charities British Heart Foundation Parkinson's Disease Society The ARRIVE guidelines (see Table 2) can be applied to any area of bioscience research using laboratory animals, and the inherent principles apply not only to reporting comparative experiments but also to other study designs. Laboratory animal refers to any species of animal undergoing an experimental procedure in a research laboratory or formal test setting. The guidelines are not intended to be mandatory or absolutely prescriptive, nor to standardise or formalise the structure of reporting. Rather they provide a checklist that can be used to guide authors preparing manuscripts for publication, and by those involved in peer review for quality assurance, to ensure completeness and transparency. 10.1371/journal.pbio.1000412.t002 Table 2 Animal Research: Reporting In Vivo experiments: The ARRIVE guidelines. ITEM RECOMMENDATION TITLE 1 Provide as accurate and concise a description of the content of the article as possible. ABSTRACT 2 Provide an accurate summary of the background, research objectives (including details of the species or strain of animal used), key methods, principal findings, and conclusions of the study. INTRODUCTION Background 3 a. Include sufficient scientific background (including relevant references to previous work) to understand the motivation and context for the study, and explain the experimental approach and rationale.b. Explain how and why the animal species and model being used can address the scientific objectives and, where appropriate, the study's relevance to human biology. Objectives 4 Clearly describe the primary and any secondary objectives of the study, or specific hypotheses being tested. METHODS Ethical statement 5 Indicate the nature of the ethical review permissions, relevant licences (e.g. Animal [Scientific Procedures] Act 1986), and national or institutional guidelines for the care and use of animals, that cover the research. Study design 6 For each experiment, give brief details of the study design, including:a. The number of experimental and control groups.b. Any steps taken to minimise the effects of subjective bias when allocating animals to treatment (e.g., randomisation procedure) and when assessing results (e.g., if done, describe who was blinded and when).c. The experimental unit (e.g. a single animal, group, or cage of animals).A time-line diagram or flow chart can be useful to illustrate how complex study designs were carried out. Experimental procedures 7 For each experiment and each experimental group, including controls, provide precise details of all procedures carried out. For example:a. How (e.g., drug formulation and dose, site and route of administration, anaesthesia and analgesia used [including monitoring], surgical procedure, method of euthanasia). Provide details of any specialist equipment used, including supplier(s).b. When (e.g., time of day).c. Where (e.g., home cage, laboratory, water maze).d. Why (e.g., rationale for choice of specific anaesthetic, route of administration, drug dose used). Experimental animals 8 a. Provide details of the animals used, including species, strain, sex, developmental stage (e.g., mean or median age plus age range), and weight (e.g., mean or median weight plus weight range).b. Provide further relevant information such as the source of animals, international strain nomenclature, genetic modification status (e.g. knock-out or transgenic), genotype, health/immune status, drug- or test-naïve, previous procedures, etc. Housing and husbandry 9 Provide details of:a. Housing (e.g., type of facility, e.g., specific pathogen free (SPF); type of cage or housing; bedding material; number of cage companions; tank shape and material etc. for fish).b. Husbandry conditions (e.g., breeding programme, light/dark cycle, temperature, quality of water etc. for fish, type of food, access to food and water, environmental enrichment).c. Welfare-related assessments and interventions that were carried out before, during, or after the experiment. Sample size 10 a. Specify the total number of animals used in each experiment and the number of animals in each experimental group.b. Explain how the number of animals was decided. Provide details of any sample size calculation used.c. Indicate the number of independent replications of each experiment, if relevant. Allocating animals to experimental groups 11 a. Give full details of how animals were allocated to experimental groups, including randomisation or matching if done.b. Describe the order in which the animals in the different experimental groups were treated and assessed. Experimental outcomes 12 Clearly define the primary and secondary experimental outcomes assessed (e.g., cell death, molecular markers, behavioural changes). Statistical methods 13 a. Provide details of the statistical methods used for each analysis.b. Specify the unit of analysis for each dataset (e.g. single animal, group of animals, single neuron).c. Describe any methods used to assess whether the data met the assumptions of the statistical approach. RESULTS Baseline data 14 For each experimental group, report relevant characteristics and health status of animals (e.g., weight, microbiological status, and drug- or test-naïve) before treatment or testing (this information can often be tabulated). Numbers analysed 15 a. Report the number of animals in each group included in each analysis. Report absolute numbers (e.g. 10/20, not 50%a).b. If any animals or data were not included in the analysis, explain why. Outcomes and estimation 16 Report the results for each analysis carried out, with a measure of precision (e.g., standard error or confidence interval). Adverse events 17 a. Give details of all important adverse events in each experimental group.b. Describe any modifications to the experimental protocols made to reduce adverse events. DISCUSSION Interpretation/scientific implications 18 a. Interpret the results, taking into account the study objectives and hypotheses, current theory, and other relevant studies in the literature.b. Comment on the study limitations including any potential sources of bias, any limitations of the animal model, and the imprecision associated with the resultsa.c. Describe any implications of your experimental methods or findings for the replacement, refinement, or reduction (the 3Rs) of the use of animals in research. Generalisability/translation 19 Comment on whether, and how, the findings of this study are likely to translate to other species or systems, including any relevance to human biology. Funding 20 List all funding sources (including grant number) and the role of the funder(s) in the study. a Schulz, et al. (2010) [24]. Improved Reporting Will Maximise the Output of Published Research These guidelines were developed to maximise the output from research using animals by optimising the information that is provided in publications on the design, conduct, and analysis of the experiments. The need for such guidelines is further illustrated by the systematic reviews of animal research that have been carried out to assess the efficacy of various drugs and interventions in animal models [8],[9],[13],[52]–[55]. Well-designed and -reported animal studies are the essential building blocks from which such a systematic review is constructed. The reviews have found that, in many cases, reporting omissions, in addition to the limitations of the animal models used in the individual studies assessed in the review, are a barrier to reaching any useful conclusion about the efficacy of the drugs and interventions being compared [2],[3]. Driving improvements in reporting research using animals will require the collective efforts of authors, journal editors, peer reviewers, and funding bodies. There is no single simple or rapid solution, but the ARRIVE guidelines provide a practical resource to aid these improvements. The guidelines will be published in several leading bioscience research journals simultaneously [56]–[60], and publishers have already endorsed the guidelines by including them in their journal Instructions to Authors subsequent to publication. The NC3Rs will continue to work with journal editors to extend the range of journals adopting the guidelines, and with the scientific community to disseminate the guidelines as widely as possible (http://www.nc3rs.org.uk/ARRIVE).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gasdermins, a protein family executing cell death and inflammation

              The gasdermins are a family of recently identified pore-forming effector proteins that cause membrane permeabilization and pyroptosis, a lytic pro-inflammatory type of cell death. Gasdermins contain a cytotoxic N-terminal domain and a C-terminal repressor domain connected by a flexible linker. Proteolytic cleavage between these two domains releases the intramolecular inhibition on the cytotoxic domain, allowing it to insert into cell membranes and form large oligomeric pores, which disrupts ion homeostasis and induces cell death. Gasdermin-induced pyroptosis plays a prominent role in many hereditary diseases and (auto)inflammatory disorders as well as in cancer. In this Review, we discuss recent developments in gasdermin research with a focus on mechanisms that control gasdermin activation, pore formation and functional consequences of gasdermin-induced membrane permeabilization.
                Bookmark

                Author and article information

                Journal
                Proc Natl Acad Sci U S A
                Proc Natl Acad Sci U S A
                pnas
                PNAS
                Proceedings of the National Academy of Sciences of the United States of America
                National Academy of Sciences
                0027-8424
                1091-6490
                29 August 2022
                6 September 2022
                1 March 2023
                : 119
                : 36
                : e2201494119
                Affiliations
                [1] aCentre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research , Clayton, VIC 3168, Australia;
                [2] bDepartment of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University , Clayton, VIC 3800, Australia;
                [3] cLung Health Research Centre, Department of Biochemistry and Pharmacology, The University of Melbourne , Parkville, VIC 3050, Australia;
                [4] dMonash Lung and Sleep, Monash Health , Clayton, VIC 3168, Australia;
                [5] eDivision of Rheumatology, University Hospital of Geneva , H-1211 Geneva 14, Switzerland;
                [6] fDepartment of Pathology and Immunology, University of Geneva School of Medicine , H-1211 Geneva 4, Switzerland;
                [7] gCancer and Inflammation Program, National Cancer Institute , Frederick, MD 21702;
                [8] hSchool of Health and Biomedical Sciences, RMIT University , Bundoora, VIC 3083, Australia;
                [9] iInstitute of Biochemistry, Christian Albrechts University , 24118 Kiel, Germany
                Author notes
                1To whom correspondence may be addressed. Email: Brendan.Jenkins@ 123456hudson.org.au .

                Edited by Katherine Fitzgerald, University of Massachusetts Medical School, Worcester, MA; received January 28, 2022; accepted August 5, 2022

                Author contributions: B.J.J. designed research; S.M.R., L.M., L.F.D., H.J.S., A.C.W., A.J.W., T.W., M.A., S.B., R.V., and M.I.S. performed research; M.M., P.T.K., P.G.B., C.G., D.M.K., G.P.A., and S.R.-J. contributed new reagents/analytic tools; S.M.R., L.M., R.V., M.I.S., and B.J.J. analyzed data; and B.J.J. wrote the paper.

                Author information
                https://orcid.org/0000-0002-4074-2012
                https://orcid.org/0000-0002-7595-6432
                https://orcid.org/0000-0001-5701-4874
                https://orcid.org/0000-0003-2262-7587
                https://orcid.org/0000-0003-1138-0590
                https://orcid.org/0000-0001-6853-3063
                https://orcid.org/0000-0001-6533-8641
                https://orcid.org/0000-0001-8443-7071
                https://orcid.org/0000-0002-7519-3279
                https://orcid.org/0000-0002-4855-2360
                Article
                202201494
                10.1073/pnas.2201494119
                9457334
                36037355
                62b933a2-3611-429d-99f6-630f1e6c535d
                Copyright © 2022 the Author(s). Published by PNAS.

                This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

                History
                : 05 August 2022
                Page count
                Pages: 12
                Funding
                Funded by: Department of Health | National Health and Medical Research Council (NHMRC) 501100000925
                Award ID: 1139373
                Award Recipient : Brendan J Jenkins
                Categories
                420
                Biological Sciences
                Immunology and Inflammation

                aim2,emphysema,inflammasome,apoptosis,il-6
                aim2, emphysema, inflammasome, apoptosis, il-6

                Comments

                Comment on this article