3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Studies of pharmacokinetic and pharmacodynamic properties of isoallopregnanolone in healthy women

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Neurosteroids: endogenous regulators of the GABA(A) receptor.

          GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Utility of a New Procedure for Diagnosing Mental Disorders in Primary Care

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cytochrome P450-mediated metabolism of estrogens and its regulation in human.

              Estrogens are eliminated from the body by metabolic conversion to estrogenically inactive metabolites that are excreted in the urine and/or feces. The first step in the metabolism of estrogens is the hydroxylation catalyzed by cytochrome P450 (CYP) enzymes. Since most CYP isoforms are abundantly expressed in liver, the metabolism of estrogens mainly occurs in the liver. A major metabolite of estradiol, 2-hydroxyestradiol, is mainly catalyzed by CYP1A2 and CYP3A4 in liver, and by CYP1A1 in extrahepatic tissues. However, CYP1B1 which is highly expressed in estrogen target tissues including mammary, ovary, and uterus, specifically catalyzes the 4-hydroxylation of estradiol. Since 4-hydroxyestradiol generates free radicals from the reductive-oxidative cycling with the corresponding semiquinone and quinone forms, which cause cellular damage, the specific and local formation of 4-hydroxyestradiol is important for breast and endometrial carcinogenesis. Changes in the expression level of estrogen-metabolizing CYP isoforms not only alter the intensity of the action of estrogen but may also alter the profile of its physiological effect in liver and target tissues. Generally, many CYP isoforms are induced by the substrates themselves, resulting in enhanced metabolism and elimination from the body. Of particular interest is a novel finding that human CYP1B1 is regulated by estradiol via the estrogen receptor. This fact suggests that the regulation of CYP enzymes involved in estrogen metabolism by estrogen itself would be physiologically significant for the homeostasis of estrogens at local organs. In this mini-review, we discuss the CYP-mediated metabolism of estrogens and the regulation of the estrogen-metabolizing CYP enzymes in relation to the risk of cancer.
                Bookmark

                Author and article information

                Journal
                Psychopharmacology
                Psychopharmacology
                Springer Science and Business Media LLC
                0033-3158
                1432-2072
                March 2009
                October 24 2008
                March 2009
                : 203
                : 1
                : 85-98
                Article
                10.1007/s00213-008-1372-8
                62bb9f5e-fb39-4005-a1f8-3af408d719bb
                © 2009

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article