+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Performance characterization of siemens primus linear accelerator under small monitor unit and small segments for the implementation of step-and-shoot intensity-modulated radiotherapy


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Implementation of step-and-shoot intensity-modulated radiotherapy (IMRT) needs careful understanding of the accelerator start-up characteristic to ensure accurate and precise delivery of radiation dose to patient. The dosimetric characteristic of a Siemens Primus linear accelerator (LA) which delivers 6 and 18 MV x-rays at the dose rate of 300 and 500 monitor unit (MU) per minutes (min) respectively was studied under the condition of small MU ranging from 1 to 100. Dose monitor linearity was studied at different dose calibration parameter (D1_C0) by measuring ionization at 10 cm depth in a solid water phantom using a 0.6 cc ionization chamber. Monitor unit stability was studied from different intensity modulated (IM) groups comprising various combinations of MU per field and number of fields. Stability of beam flatness and symmetry was investigated under normal and IMRT mode for 20×20 cm 2 field under small MU using a 2D Profiler kept isocentrically at 5 cm depth. Inter segment response was investigated form 1 to 10 MU by measuring the dose per MU from various IM groups, each consisting of four segments with inter-segment separation of 2 cm.

          In the range 1-4 MU, the dose linearity error was more than 5% (max −32% at 1 MU) for 6 MV x-rays at factory calibrated D1_C0 value of 6000. The dose linearity error was reduced to −10.95% at 1 MU, within −3% for 2 and 3 MU and ±1% for MU ≥4 when the D1_C0 was subsequently tuned at 4500. For 18 MV x-rays, the dose linearity error at factory calibrated D1_C0 value of 4400 was within ±1% for MU ≥3 with maximum of −13.5 observed at 1 MU. For both the beam energies and MU/field ≥4, the stability of monitor unit tested for different IM groups was within ±1% of the dose from the normal treatment field. This variation increases to −2.6% for 6 MV and −2.7% for 18 MV x-rays for 2 MU/field. No significant variation was observed in the stability of beam profile measured from normal and IMRT mode. The beam flatness was within 3% for 6 MV x-rays and more than 3% (Max 3.5%) for 18 MV x-rays at lesser irradiation time ≤3 MU. The beam stability improves with the increase in irradiation time. Both the beam energies show very good symmetry (≤2%) at all irradiation time.

          For all the three segment sizes studied, the nonlinearity was observed at smaller MU/segment in both the energies. When the MU/segment is ≥4, all segment size shows fairly linear relation with dose/MU. The smaller segment size shows larger nonlinearity at smaller MU/segment and become more linear at larger MU/segment. Based on our study, we conclude that the Primus LA from Siemens installed at our hospital is ideally suited for step-and-shoot IMRT preferably for radiation ON time ≥4MU per segment.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Guidance document on delivery, treatment planning, and clinical implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee.

          Intensity-modulated radiation therapy (IMRT) represents one of the most significant technical advances in radiation therapy since the advent of the medical linear accelerator. It allows the clinical implementation of highly conformal nonconvex dose distributions. This complex but promising treatment modality is rapidly proliferating in both academic and community practice settings. However, these advances do not come without a risk. IMRT is not just an add-on to the current radiation therapy process; it represents a new paradigm that requires the knowledge of multimodality imaging, setup uncertainties and internal organ motion, tumor control probabilities, normal tissue complication probabilities, three-dimensional (3-D) dose calculation and optimization, and dynamic beam delivery of nonuniform beam intensities. Therefore, the purpose of this report is to guide and assist the clinical medical physicist in developing and implementing a viable and safe IMRT program. The scope of the IMRT program is quite broad, encompassing multileaf-collimator-based IMRT delivery systems, goal-based inverse treatment planning, and clinical implementation of IMRT with patient-specific quality assurance. This report, while not prescribing specific procedures, provides the framework and guidance to allow clinical radiation oncology physicists to make judicious decisions in implementing a safe and efficient IMRT program in their clinics.
            • Record: found
            • Abstract: found
            • Article: not found

            Intensity-modulated radiotherapy: current status and issues of interest.

            To develop and disseminate a report aimed primarily at practicing radiation oncology physicians and medical physicists that describes the current state-of-the-art of intensity-modulated radiotherapy (IMRT). Those areas needing further research and development are identified by category and recommendations are given, which should also be of interest to IMRT equipment manufacturers and research funding agencies. The National Cancer Institute formed a Collaborative Working Group of experts in IMRT to develop consensus guidelines and recommendations for implementation of IMRT and for further research through a critical analysis of the published data supplemented by clinical experience. A glossary of the words and phrases currently used in IMRT is given in the. Recommendations for new terminology are given where clarification is needed. IMRT, an advanced form of external beam irradiation, is a type of three-dimensional conformal radiotherapy (3D-CRT). It represents one of the most important technical advances in RT since the advent of the medical linear accelerator. 3D-CRT/IMRT is not just an add-on to the current radiation oncology process; it represents a radical change in practice, particularly for the radiation oncologist. For example, 3D-CRT/IMRT requires the use of 3D treatment planning capabilities, such as defining target volumes and organs at risk in three dimensions by drawing contours on cross-sectional images (i.e., CT, MRI) on a slice-by-slice basis as opposed to drawing beam portals on a simulator radiograph. In addition, IMRT requires that the physician clearly and quantitatively define the treatment objectives. Currently, most IMRT approaches will increase the time and effort required by physicians, medical physicists, dosimetrists, and radiation therapists, because IMRT planning and delivery systems are not yet robust enough to provide totally automated solutions for all disease sites. Considerable research is needed to model the clinical outcomes to allow truly automated solutions. Current IMRT delivery systems are essentially first-generation systems, and no single method stands out as the ultimate technique. The instrumentation and methods used for IMRT quality assurance procedures and testing are not yet well established. In addition, many fundamental questions regarding IMRT are still unanswered. For example, the radiobiologic consequences of altered time-dose fractionation are not completely understood. Also, because there may be a much greater ability to trade off dose heterogeneity in the target vs. avoidance of normal critical structures with IMRT compared with traditional RT techniques, conventional radiation oncology planning principles are challenged. All in all, this new process of planning and treatment delivery has significant potential for improving the therapeutic ratio and reducing toxicity. Also, although inefficient currently, it is expected that IMRT, when fully developed, will improve the overall efficiency with which external beam RT can be planned and delivered, and thus will potentially lower costs. Recommendations in the areas pertinent to IMRT, including dose-calculation algorithms, acceptance testing, commissioning and quality assurance, facility planning and radiation safety, and target volume and dose specification, are presented. Several of the areas in which future research and development are needed are also indicated. These broad recommendations are intended to be both technical and advisory in nature, but the ultimate responsibility for clinical decisions pertaining to the implementation and use of IMRT rests with the radiation oncologist and radiation oncology physicist. This is an evolving field, and modifications of these recommendations are expected as new technology and data become available.
              • Record: found
              • Abstract: found
              • Article: not found

              Acceptance tests and quality control (QC) procedures for the clinical implementation of intensity modulated radiotherapy (IMRT) using inverse planning and the sliding window technique: experience from five radiotherapy departments.

              An increasing number of radiotherapy centres is now aiming for clinical implementation of intensity modulated radiotherapy (IMRT), but--in contrast to conventional treatment--no national or international guidelines for commissioning of the treatment planning system (TPS) and acceptance tests of treatment equipment have yet been developed. This paper bundles the experience of five radiotherapy departments that have introduced IMRT into their clinical routine. The five radiotherapy departments are using similar configurations since they adopted the commercially available Varian solution for IMRT, regarding treatment planning as well as treatment delivery. All are using the sliding window technique. Different approaches towards the derivation of the multileaf collimator (MLC) parameters required for the configuration of the TPS are described. A description of the quality control procedures for the dynamic MLC, including their respective frequencies, is given. For the acceptance of the TPS for IMRT multiple quality control plans were developed on a variety of phantoms, testing the flexibility of the inverse planning modules to produce the desired dose pattern as well as assessing the accuracy of the dose calculation. Regarding patient treatment verification, all five centres perform dosimetric pre-treatment verification of the treatment fields, be it on a single field or on a total plan procedure. During the actual treatment, the primary focus is on patient positioning rather than dosimetry. Intracavitary in vivo measurements were performed in special cases. The configurational MLC parameters obtained through different methods are not identical for all centres, but the observed variations have shown to be of no significant clinical relevance. The quality control (QC) procedures for the dMLC have not detected any discrepancies since their initiation, demonstrating the reliability of the MLC controller. The development of geometrically simple QC plans to test the inverse planning, the dynamic MLC modules and the final dose calculation has proven to be useful in pointing out the need to remodel the single pencil beam scatter kernels in some centres. The final correspondence between calculated and measured dose was found to be satisfactory by all centres, for QC test plans as well as for pre-treatment verification of clinical IMRT fields. An intercomparison of the man hours needed per patient plan verification reveals a substantial variation depending on the type of measurements performed. Copyright 2002 Elsevier Science Ireland Ltd.

                Author and article information

                J Med Phys
                Journal of Medical Physics / Association of Medical Physicists of India
                Medknow Publications (India )
                Oct-Dec 2006
                : 31
                : 4
                : 269-274
                Department of Radiation Oncology, ACTREC, TMC, Kharghar, New Mumbai, India
                [* ]Department of Medical Physics, Tata Memorial Hospital, TMC, Parel, Mumbai, India
                Author notes
                Address for correspondence: Reena Phurailatpam Department of Radiation Oncology, ACTREC, TMC, Kharghar, New Mumbai - 410 208, India E-mail: rphurailatpam@ 123456actrec.res.in
                © Journal of Medical Physics

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 08 August 2006
                : 02 September 2006
                Original Article

                Medical physics
                performance characterization,small monitor unit,small segment,step-and-shoot intensity-modulated radiotherapy


                Comment on this article