82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma

      research-article
      1 , 2 , a , 2
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Circular RNAs (circRNAs), a kind of non-coding RNAs, have shown large capabilities in gene regulation. However, the mechanisms underlying circRNAs remain largely unknown so far. Recent studies demonstrated that circRNAs play miRNA sponge effects and regulate gene expression by microRNA response elements. Here, we screened circRNA expression profiles of bladder carcinoma using microarray assay. A total of 469 dysregulated circular transcripts are found in bladder cancer compared with normal tissues, among which 285 were up-regulated and 184 were down-regulated. Six circRNAs were identified to have significant differences by qRT-PCR. We speculated that circRNAs might involve in cancer-related pathways via interactions with miRNA by multiple bioinformatical approaches. Therefore, we further predicted that circTCF25 could sequester miR-103a-3p/miR-107, which potentially lead to the up-regulation of thirteen targets related to cell proliferation, migration and invasion. Subsequently, we demonstrated that over-expression of circTCF25 could down-regulate miR-103a-3p and miR-107, increase CDK6 expression, and promote proliferation and migration in vitro and vivo. This is the first study to exploit circRNA profiling and circRNA/miRNA interactions in bladder cancer. Our work laid the foundation to investigate the functions of circRNAs in cancers. The data also suggest that circTCF25 might be a new promising marker for bladder cancer.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MicroRNA Targets in Drosophila

          Additional data files Additional data file 1, 2, 3 and 4. Supplementary Material Additional data file 1 Additional data file 1 Click here for additional data file Additional data file 2 Additional data file 2 Click here for additional data file Additional data file 3 Additional data file 3 Click here for additional data file Additional data file 4 Additional data file 4 Click here for additional data file
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcription and secretion in islet cells

            Among the identified thousands of circular RNAs (circRNA) in humans and animals, Cdr1as (also known as CiRS-7) was recently demonstrated to act as a powerful miR-7 sponge/inhibitor in developing midbrain of zebrafish, suggesting a novel mechanism for regulating microRNA functions. MiR-7 is abundantly expressed in islet cells, but overexpressing miR-7 in transgenic mouse β cells causes diabetes. Therefore, we infer that Cdr1as expression may inhibit miR-7 function in islet cells, which in turn improves insulin secretion. Here, we show the first characterization of Cdr1as expression in islet cells, which was upregulated by long-term forskolin and PMA stimulation, but not high glucose, indicating the involvement of cAMP and PKC pathways. Remarkably, both insulin content and secretion were significantly increased by overexpression of Cdr1as in islet cells. We further identified a new target Myrip in the Cdr1as/miR-7 pathway that regulates insulin granule secretion, and also another target Pax6 that enhances insulin transcription. Taken together, our findings revealed the effects of the strongly interacting pair of Cdr1as/miR-7 on insulin secretion, which may become a new target for improving β cell function in diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits

              Circular RNAs are new players in regulation of post transcriptional gene expression. Animal genomes express many circular RNAs from diverse genomic locations. A recent study has validated a fairly large number of circular RNAs in human, mouse, and nematode. Circular RNAs play a crucial role in fine tuning the level of miRNA mediated regulation of gene expression by sequestering the miRNAs. Their interaction with disease associated miRNAs indicates that circular RNAs are important for disease regulation. In this paper we studied the potential association of circular RNAs (circRNA) with human diseases in two different ways. Firstly, the interactions of circRNAs with disease associated miRNAs were identified, following which the likelihood of a circRNA being associated with a disease was calculated. For the miRNAs associated with individual diseases, we constructed a network of predicted interactions between the miRNAs and protein coding, long non-coding and circular RNA genes. We carried out gene ontology (GO) enrichment analysis on the set of protein coding genes in the miRNA- circRNA interactome of individual diseases to check the enrichment of genes associated with particular biological processes. Secondly, disease associated SNPs were mapped on circRNA loci, and Argonaute (Ago) interaction sites on circular RNAs were identified. We compiled a database of disease-circRNA association in Circ2Traits (http://gyanxet-beta.com/circdb/), the first comprehensive knowledgebase of potential association of circular RNAs with diseases in human.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                03 August 2016
                2016
                : 6
                : 30919
                Affiliations
                [1 ]The First Clinical College, Chongqing Medical University , Chongqing 400016, China
                [2 ]Department of Cell Biology and Genetics, Chongqing Medical University , Chongqing 400016, China
                Author notes
                Article
                srep30919
                10.1038/srep30919
                4971518
                27484176
                62c4976e-8588-4ec9-93f6-b222a94b9a07
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 16 November 2015
                : 11 July 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article