11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spontaneous reossification of the sella in transsphenoidal reoperation associated with strontium ranelate

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spontaneous reossification of the sellar floor after transsphenoidal surgery has been rarely reported. Strontium ranelate, a divalent strontium salt, has been shown to increase bone formation, increasing osteoblast activity. We describe an unusual case of a young patient with Cushing’s disease who was treated with strontium ranelate for low bone mass who experienced spontaneous sellar reossification after transsphenoidal surgery. A 21-year-old male presented with Cushing’s features. His past medical history included delayed puberty diagnosed at 16 years, treated with testosterone for 3 years without further work-up. He was diagnosed with Cushing’s disease initially treated with transsphenoidal surgery, which was not curative. The patient did not come to follow-up visits for more than 1 year. He was prescribed strontium ranelate 2 g orally once daily for low bone mass by an outside endocrinologist, which he received for more than 1 year. Two years after first surgery he was reevaluated and persisted with active Cushing’s disease. Magnetic resonance image revealed a left 4 mm hypointense mass, with sphenoid sinus occupation by a hyperintense material. At repeated transsphenoidal surgery, sellar bone had a very hard consistency; surgery was complicated and the patient died. Sellar reossification negatively impacted surgery outcomes in this patient. While this entity is possible after transsphenoidal surgery, it remains unclear whether strontium ranelate could have affected sellar ossification.

          Learning points:
          • Delayed puberty can be a manifestation of Cushing’s syndrome. A complete history, physical examination and appropriate work-up should be performed before initiating any treatment.

          • Sellar reossification should always be taken into account when considering repeated transsphenoidal surgery. Detailed preoperative evaluation of bony structures by computed tomography ought to be performed in all cases of reoperation.

          • We speculate if strontium ranelate may have affected bone mineralization at the sellar floor. We strongly recommend that indications for prescribing this drug should be carefully followed.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro.

          Strontium ranelate is a newly developed drug that has been shown to significantly reduce the risk of vertebral and non-vertebral fractures, including those of the hip, in postmenopausal women with osteoporosis. In contrast to other available treatments for osteoporosis, strontium ranelate increases bone formation and decreases resorption. In this study, the dual mode of action of strontium ranelate in bone was tested in vitro, on primary murine osteoblasts and osteoclasts derived from calvaria and spleen cells, respectively. We show that strontium ranelate treatment, either continuously or during proliferation or differentiation phases of mouse calvaria cells, stimulates osteoblast formation. Indeed after 22 days of continuous treatment with strontium ranelate, the expression of the osteoblast markers ALP, BSP and OCN was increased, and was combined with an increase in bone nodule numbers. On the other hand, the number of mature osteoclasts strongly decreased after strontium ranelate treatment. Similarly to previous studies, we confirm that osteoclasts resorbing activity was also reduced but we found that strontium ranelate treatment was associated with a disruption of the osteoclast actin-containing sealing zone. Therefore, our in vitro assays performed on primary murine bone cells confirmed the dual action of strontium ranelate in vivo as an anabolic agent on bone remodeling. It stimulates bone formation through its positive action on osteoblast differentiation and function, and decreases osteoclast differentiation as well as function by disrupting actin cytoskeleton organization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate.

            Strontium ranelate is a new anti-osteoporotic treatment. On bone biopsies collected from humans receiving long-term treatment over 5 yr, it has been shown that strontium ranelate has good bone safety and better results than placebo on 3D microarchitecture. Hence, these effects may explain the decreased fracture rate. Strontium ranelate's mode of action involving dissociation of bone formation and resorption was shown in preclinical studies and could explain its antifracture efficacy in humans. One hundred forty-one transiliac bone biopsies were obtained from 133 postmenopausal osteoporotic women: 49 biopsies after 1-5 yr of 2 g/d strontium ranelate and 92 biopsies at baseline or after 1-5 yr of placebo. Histomorphometry provided a 2D demonstration of the bone safety of strontium ranelate, with significantly higher mineral apposition rate (MAR) in cancellous bone (+9% versus control, p = 0.019) and borderline higher in cortical bone (+10%, p = 0.056). Osteoblast surfaces were significantly higher (+38% versus control, p = 0.047). 3D analysis of 3-yr biopsies with treatment (20 biopsies) and placebo (21 biopsies) using microCT showed significant changes in microarchitecture with, in the strontium ranelate group, higher cortical thickness (+18%, p = 0.008) and trabecular number (+14%, p = 0.05), and lower structure model index (-22%, p = 0.01) and trabecular separation (-16%, p = 0.04), with no change in cortical porosity. The changes in 3D microarchitecture may enhance bone biomechanical competence and explain the decreased fracture rate with strontium ranelate.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing.

              Treatment of an underlying disease is often initiated after the occurrence of an osteoporotic fracture. Our aim was to investigate whether teriparatide (PTH 1-34) and strontium ranelate affect fracture healing in ovariectomized (OVX) rats when provided for the first time after the occurrence of an osteoporotic fracture. We combined the model of an OVX rat with a closed diaphyseal fracture. Sixty Sprague Dawley rats were randomly assigned to four groups. Fracture healing in OVX rats after treatment with pharmacological doses of strontium ranelate and PTH 1-34 was compared with OVX and sham-treated control groups. After 28 days, the femur was excised and scanned by micro computed tomography and the callus evaluated, after which biomechanical torsional testing was performed and torque and toughness until reaching the yield point were analyzed. Only treatment with strontium ranelate led to a significant increase in callus resistance compared to the OVX control rats, whereas both PTH 1-34 and strontium ranelate increased the bone volume/tissue volume ratio of the callus. The PTH 1-34-increased trabecular bone volume within the callus was even higher compared to sham. As for the callus tissue volume, the increase induced by strontium ranelate was significant, contrary to the changes induced by PTH. Callus in strontium ranelate-treated animals is more resistant to torsion compared with OVX control rats. To our knowledge, this is the first report of the enhancement of fracture healing by strontium ranelate. Because both treatments enhance bone and tissue volume within the callus, there may be a qualitative difference between the calluses of PTH 1-34- and strontium ranelate-treated OVX rats. The superior results obtained with strontium ranelate compared to PTH in terms of callus resistance could be the consequence of a better quality of the new bone formed within the callus.
                Bookmark

                Author and article information

                Journal
                Endocrinol Diabetes Metab Case Rep
                Endocrinol Diabetes Metab Case Rep
                EDM
                Endocrinology, Diabetes & Metabolism Case Reports
                Bioscientifica Ltd (Bristol )
                2052-0573
                07 July 2017
                2017
                : 2017
                : 17-0037
                Affiliations
                [1 ]Clínica de Endocrinología y Metabolismo
                [2 ]Neurocirugía , Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo Uruguay
                Author notes
                Correspondence should be addressed to M M Pineyro; Email: mercepin@ 123456gmail.com
                Article
                EDM170037
                10.1530/EDM-17-0037
                5510395
                62c730c1-2f60-478a-a301-2ebe301e8ad9
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

                History
                : 14 May 2017
                : 6 June 2017
                Categories
                Unusual Effects of Medical Treatment

                Comments

                Comment on this article