13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COMPANION ANIMALS SYMPOSIUM: Microbes and gastrointestinal health of dogs and cats 1

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Recent molecular studies have revealed complex bacterial, fungal, archaeal, and viral communities in the gastrointestinal tract of dogs and cats. More than 10 bacterial phyla have been identified, with Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria constituting more than 99% of all gut microbiota. Microbes act as a defending barrier against invading pathogens, aid in digestion, provide nutritional support for enterocytes, and play a crucial role in the development of the immune system. Of significance for gastrointestinal health is their ability to ferment dietary substrates into short-chain fatty acids, predominantly to acetate, propionate, and butyrate. However, microbes can have also a detrimental effect on host health. Specific pathogens (e.g., Salmonella, Campylobacter jejuni, and enterotoxigenic Clostridium perfringens) have been implicated in acute and chronic gastrointestinal disease. Compositional changes in the small intestinal microbiota, potentially leading to changes in intestinal permeability and digestive function, have been suggested in canine small intestinal dysbiosis or antibiotic-responsive diarrhea. There is mounting evidence that microbes play an important role in the pathogenesis of canine and feline inflammatory bowel disease (IBD). Current theories for the development of IBD favor a combination of environmental factors, the intestinal microbiota, and a genetic susceptibility of the host. Recent studies have revealed a genetic susceptibility for defective bacterial clearance in Boxer dogs with granulomatous colitis. Differential expression of pathogen recognition receptors (i.e., Toll-like receptors) were identified in dogs with chronic enteropathies. Similarly to humans, a microbial dysbiosis has been identified in feline and canine IBD. Commonly observed microbial changes are increased Proteobacteria (i.e., Escherichia coli) with concurrent decreases in Firmicutes, especially a reduced diversity in Clostridium clusters XIVa and IV (i.e., Lachnospiraceae, Ruminococcaceae, Faecalibacterium spp.). This would indicate that these bacterial groups, important short-chain fatty acid producers, may play an important role in promoting intestinal health.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.

          Resistant starch (RS) is starch and products of its small intestinal digestion that enter the large bowel. It occurs for various reasons including chemical structure, cooking of food, chemical modification, and food mastication. Human colonic bacteria ferment RS and nonstarch polysaccharides (NSP; major components of dietary fiber) to short-chain fatty acids (SCFA), mainly acetate, propionate, and butyrate. SCFA stimulate colonic blood flow and fluid and electrolyte uptake. Butyrate is a preferred substrate for colonocytes and appears to promote a normal phenotype in these cells. Fermentation of some RS types favors butyrate production. Measurement of colonic fermentation in humans is difficult, and indirect measures (e.g., fecal samples) or animal models have been used. Of the latter, rodents appear to be of limited value, and pigs or dogs are preferable. RS is less effective than NSP in stool bulking, but epidemiological data suggest that it is more protective against colorectal cancer, possibly via butyrate. RS is a prebiotic, but knowledge of its other interactions with the microflora is limited. The contribution of RS to fermentation and colonic physiology seems to be greater than that of NSP. However, the lack of a generally accepted analytical procedure that accommodates the major influences on RS means this is yet to be established.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.

            This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis.

              The study aim was to describe the diversity of the intraluminal intestinal microbial community in dogs by direct sequence analysis of the 16S rRNA gene. Intestinal content was collected from the duodenum, jejunum, ileum, and colon from six healthy dogs. Bacterial 16S rRNA gene was amplified with universal bacterial primers. Amplicons were ligated into cloning vectors and near-full-length 16S rRNA gene inserts were analyzed. From a total of 864 clones analyzed, 106 nonredundant 16S rRNA gene sequences were identified. Forty-two (40%) sequences showed<98% sequence similarity to 16S rRNA gene sequences reported previously. Operation taxonomic units were classified into four phyla: Firmicutes, Fusobacteria, Bacteroidetes, and Proteobacteria. Clostridiales predominated in the duodenum (40% of clones) and jejunum (39%), and were highly abundant in the ileum (25%) and colon (26%). Sequences affiliated with Clostridium cluster XI and Clostridium cluster XIVa dominated in the proximal small intestine and colon, respectively. Fusobacteriales and Bacteroidales were the most abundant bacterial order in the ileum (33%) and colon (30%). Enterobacteriales were more commonly observed in the small intestine than in the colon. Lactobacillales occurred commonly in all parts of the intestine.
                Bookmark

                Author and article information

                Journal
                J Anim Sci
                J. Anim. Sci
                ansci
                Journal of Animal Science
                Oxford University Press
                0021-8812
                1525-3163
                May 2011
                01 May 2011
                : 89
                : 5
                : 1520-1530
                Affiliations
                [3 ]Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station 77843-4474
                Author notes
                [2 ]Corresponding author: jsuchodolski@ 123456cvm.tamu.edu
                Article
                10.2527/jas.2010-3377
                7199667
                21075970
                62c88d78-9789-4961-97f7-e4f2ee095add
                Copyright @ 2011

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                : 29 July 2010
                : 03 November 2010
                Page count
                Pages: 11
                Categories
                Animal Production
                Health and Well-Being

                canine,feline,gastrointestinal tract,inflammatory bowel disease,microbiota,16s ribosomal rna gene

                Comments

                Comment on this article